我们的项目是了解植入前小鼠胚胎中细胞谱系分化的遗传机制。我们对在小鼠中最初3天进行的层细胞(EPI)和原始内胚层细胞(PRE)之间的区分特别感兴趣,对应于人类的前6天。这些细胞将产生未来个体及其后代的所有细胞。此外,EPI是著名的ES多能干细胞的来源或类似于IPS重编程的细胞的来源。这些细胞具有提供任何胚胎或成人细胞类型的能力,因此具有巨大的细胞治疗潜力。我们的团队正在研究胚胎细胞中如何获得这些“多能”特性及其分化方式。我们还正在分析它们与前和滋养剂的相邻组织的关系,后来分别参与了蛋黄囊和胎盘的形成。
Xingfan Huang 1:2,21,Henck 3:4,21,,Wing-Lee Chan 8.9,Alexandra Despang 4.9,4.9,冰雹4.8,9,炒4,弗里德睡眠4,库珀·马歇尔,萨斯查·乌尔夫斯8,9,萨斯萨尔8,9,威特勒·拉尔斯4,维特勒·拉尔斯4,wittler lars 4,wittler lars 4,wittler lars yiwen zhu 7,yiwen zhu khu 7,yiwen zhu kire kur 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4. Ingn in. Ingnel in. Ingnel in. 1,13.17,Junyue Cao
雷帕霉素途径的哺乳动物靶标MTOR蛋白属于磷酸肌醇3-激酶(PI3K)家族及其信号通路是细胞代谢,增殖和分化,免疫系统调节和自噬机制的关键调节剂。3 MTOR蛋白与其他蛋白质结合,形成两种多蛋白络合物,即mTOR-complex 1和MTOR-COMPEMPERX 2,具有不同的组成和信号传导功能。如图1所述,mtor-complex 1对雷帕霉素敏感且对缺氧敏感,营养缺乏脱氧核糖核酸损伤。它由阳性调节剂组成,例如G蛋白β-亚基样蛋白和两个阴性调节剂Proline富含Akt蛋白40 kDa,以及含Dep域的MTOR相互作用蛋白。MTOR-COMPERX 2是一种对雷帕霉素不敏感的复合物,由m-tor,哺乳动物应激激活的蛋白激酶相互作用的雷帕霉素不敏感的伴侣组成,G蛋白β亚成蛋白和deptor。
可以使用不同颜色的荧光蛋白同时对基因进行成像(Miyawaki,2011;Han et al.,2019)。由于分子成像探针的发展取得了最新进展,可以获得不同细胞和组织状态下的细胞基因表达模式信息(Sakaue-Sawano et al.,2008;Kohl et al.,2014;Lin and Schnitzer,2016;Sakaguchi et al.,2018)。除了荧光蛋白成像外,生物发光成像也有助于定量分析基因表达动态(Shimojo 等,2008;Imayoshi 等,2013;Imayoshi and Kageyama,2014;Isomura 等,2017;Suzuki and Nagai,2017;Sueda 等,2019)。尽管生物发光探针的多色成像最初在技术上受到限制,但最近开发的短波长和长波长荧光素酶
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2024年1月11日发布。 https://doi.org/10.1101/2024.01.11.11.575188 doi:Biorxiv Preprint
flnc是扩张和肥厚性疾病中最突变的基因之一。然而,丝蛋白C在哺乳动物心脏中的确切作用尚不清楚。在这项研究中,我们证明了FLNC全球(FLNC GKO)和心肌细胞特异性敲除(FLNC CKO)小鼠在子宫内因严重破裂的心室心肌而死亡,这表明fILAMin C需要维持哺乳动物心脏心肌的结构性完整性。与普遍认为Filamin C充当整联蛋白灭活蛋白的普遍看法,我们观察到β1整合素的激活特别是在FLNC GKO小鼠的心肌中。尽管从心肌细胞中删除β1整联蛋白并未概括FLNC敲除小鼠中心脏破裂表型,从而删除了β1整合素和丝霉素C的心肌细胞导致心脏破裂比单独删除丝胺C更严重。我们的结果表明,丝蛋白C与β1整合蛋白一致合作,以维持哺乳动物心脏发育过程中肌酸的结构完整性。
串联重复是基因组的频繁结构变化,并且在遗传疾病和CER中起重要作用。然而,解释串联重复的表型后果仍然具有挑战性,部分原因是缺乏建模这种变化的遗传工具。在这里,我们通过Prime Editing(TD-PE)制定了一种策略重复,以在哺乳动物基因组中创建有针对性,可编程和精确的串联重复。在此策略中,我们针对每个有针对性的串联复制设计了一对trans Prime编辑指南RNA(PEGRNA),该重复编码相同的编辑,但在相反的方向上介绍了单链DNA(SSDNA)扩展。每个扩展的逆转录酶(RT)模板设计与其他单个指南RNA(SGRNA)的目标区域同源,以促进编辑的DNA链的重新进行重复,并在中间的片段重复。我们表明,TD-PE产生了从约50 bp到约10 kb的基因组片段的鲁棒和精确的原位串联重复,最大效率高达28.33%。通过微调pegrnas,我们同时实现了目标重复和碎片插入。最后,我们成功地产生了多种疾病的串联重复,显示了TD-PE在遗传研究中的一般效用。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2023年1月27日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2023.01.27.525830 doi:Biorxiv Preprint
通过化学诱导二聚化 (CID) 进行基因调控对生物医学研究很有用。然而,CID 工具的数量、类型、多功能性和体内应用有限。在这里,我们展示了针对嵌合体的可扩展 CID (PROTAC-CID) 平台的蛋白水解,通过系统地设计可用的 PROTAC 系统进行可诱导的基因调控和基因编辑。此外,我们开发了正交 PROTAC-CID,可以在梯度水平上微调基因表达或使用不同的逻辑门控操作多路复用生物信号。将 PROTAC-CID 平台与基因电路结合,我们实现了 DNA 重组酶、碱基编辑器和主要编辑器的数字诱导表达,用于瞬时基因组操作。最后,我们将紧凑的 PROTAC-CID 系统打包到腺相关病毒载体中,用于体内诱导和可逆的基因激活。这项工作提供了一个多功能的分子工具箱,扩大了人类细胞和小鼠中化学诱导基因调控的范围。