葡萄糖是哺乳动物细胞的关键代谢底物。血糖是糖原和脂肪生物合成以及各种含糖的大分子的前体,例如糖蛋白,糖脂和核酸。一些组织(例如大脑)需要葡萄糖作为能源和其他组织(例如肌肉)优先将葡萄糖分解为ATP的产生。血糖代谢的第一步是跨质膜的转运。此步骤是由称为葡萄糖转运蛋白的一系列膜载体蛋白(1,2)进行的。令人惊讶的是,不同的蛋白质家族负责葡萄糖在极化肠和肾上皮细胞的顶端膜中转移。这些钠 - 葡萄糖共转运蛋白是次要激活。:似乎与促进性葡萄糖转运蛋白无关的转移系统。由于葡萄糖在细胞代谢中所起的核心作用,几乎所有哺乳动物细胞中都存在一个或多个葡萄糖转运蛋白。在大多数细胞类型中,葡萄糖转运蛋白仅参与血糖的净摄取以用于细胞代谢。然而,在某些组织中,葡萄糖转运蛋白可能会参与细胞葡萄糖的净外排。例如,此过程发生在葡萄糖跨肠道或肾上皮的吸收或重吸收期间,在basolat-eary1膜中存在可容纳的葡萄糖转运蛋白,并使糖的被动通量降低其浓度梯度进入血液中。此外,在禁食过程中,转运蛋白参与了肝脏或肾脏细胞的细胞葡萄糖的净出口。葡萄糖转运蛋白参与了升高和降低血糖水平,因此非常适合参与葡萄糖稳态的调节。本综述将重点介绍有关几种关键哺乳动物组织中葡萄糖转运蛋白的最新进展。首先,我们简要描述了葡萄糖转运蛋白亚型的某些物理特性。
其他考虑因素!!• 贴壁细胞还是悬浮细胞?:两种方法都行,但悬浮细胞通常更容易(尤其是大规模培养)• 我的细胞系有核型分析数据吗?(细胞系可以是非整倍体 -> 更多等位基因可 KO)• 您所需的细胞系是否表达您需要的途径?
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
病毒表面成分与细胞受体和其他入口因子的相互作用决定了病毒感染的关键特征,例如宿主范围,对流和毒力。尽管进行了深入的研究,但我们对这些相互作用的理解仍然有限。在这里,我们报告了有关哺乳动物病毒受体和附着的发表工作的系统分析。我们构建一个数据集是迄今为止可用的数据集的两倍,并指定每个因素在病毒进入中的作用。我们鉴定出优先用作病毒再蛋白的细胞蛋白,它们倾向于具有与其他蛋白质相互作用的质子膜蛋白。使用机器学习,我们将细胞表面蛋白分配为预测其充当病毒受体的能力的分数。我们的结果还揭示了病毒之间的常见使用模式,并表明,包围病毒倾向于使用替代受体的更广泛的收益,而不是非发育的病毒,这一特征可能会赋予它们具有更高种间传播性的功能。
尽管哺乳动物的大脑大小相差五个数量级,但它们具有许多共同的解剖和功能特征,这些特征转化为皮质网络的共性。在这里,我们开发了一个机器学习框架来量化加权区域间皮质矩阵的可预测程度。部分网络连接数据是通过采用一致方法生成的逆向追踪实验获得的,并辅以非人类灵长类动物(猕猴)和啮齿动物(小鼠)的投影长度测量。我们表明,这两个物种的区域间皮质网络都具有显著的可预测性。在二进制级别,对于猕猴,链接是可预测的,ROC 曲线下面积至少为 0.8。加权中和强链接的可预测准确率为 85% – 90%(小鼠)和 70% – 80%(猕猴),而这两个物种的弱链接都不可预测。这些观察结果证实了先前的观察结果,即中尺度皮层网络的形成和演化在很大程度上是基于规则的。使用本文介绍的方法,我们对所有区域对进行了归纳,为两个物种的完整区域间网络生成了样本。这对于在物种内和物种间以最小偏差进行连接组比较研究是必要的。
简介在兽亚纲哺乳动物中,除了一些例外,胚胎是否会发育为雄性或雌性取决于 Y 染色体的存在与否 (Capel, 2017)。雄性携带一个 X 染色体和一个 Y 染色体,而雌性携带两个 X 染色体。这是两性之间最根本的遗传差异,也是众多研究的主题。从历史上看,Y 染色体的生物学功能一直被误解。从 20 世纪 50 年代开始,它被认为是一片遗传荒地,因为对人类谱系的研究只发现了常染色体或 X 连锁遗传的特征 (Stern, 1957)。1959 年,研究表明男性决定基因是 Y 连锁的,但这被认为是一条功能惰性染色体上的例外 (Ford et al., 1959; Jacobs and Strong, 1959)。当转录单位首次在 Y 染色体上被发现时(Agulnik 等人,1994 年;Arnemann 等人,1991 年;Page 等人,1987 年;Reijo 等人,1995 年;Salido 等人,1992 年;Sinclair 等人,1990 年),人们认为它们是其前常染色体祖先的失活痕迹(Marshall Graves,1995 年)。最近,“濒死”理论假设 Y 蛋白编码基因不断丢失,预示着 Y 染色体最终会丢失(Aitken and Marshall Graves,2002 年;Marshall Graves,2004 年)。我们现在知道,将 Y 染色体视为正在消失的遗传沙漠的观点是错误的。数十年的研究证明,除了控制男性性腺的性别决定外,Y 染色体对于精子发生的初始化、维持和完成也至关重要。在这篇综述中,我们首先描述了 X-Y 染色体对的进化历史,然后将其作为范例来了解 Y 染色体如何在哺乳动物中变得功能特化。我们以人类和小鼠为重点,讨论了 Y 染色体不仅仅是性别转换的早期证据,以及随后发现与精子发生有关的 Y 基因的努力。然后,我们强调了实验限制如何影响该领域的进展,并提出了丰富我们对 Y 染色体功能理解的方法。
聚糖参与细胞和有机生物学的基本方面,例如受体介导的细胞与正常过程和病原过程的基础的细胞相互作用。的确,细胞表面上的聚糖的致密层(糖蛋白)可以从某些细胞上的质膜延伸超过30 nm。细胞表面蛋白因此被嵌入在聚糖基质中。聚糖的各种功能与它们的各种结构相匹配。Glycans can be conjugated to proteins (to form glycoproteins , proteoglycans and glycosylphos- phatidylinositol (GPI)-anchored proteins) and lipids (to form glycolipids), or they can be secreted without conju- gation to other macromolecules (in the form of glycos- aminoglycans such作为透明质酸)。In humans, glycans are primarily constructed from ten monosaccharides: glucose (Glc), galactose (Gal), N -acetylglucosamine (GlcNAc), N -acetylgalactosamine (GalNAc), fucose (Fuc), xylose (Xyl), sialic acid (Neu5Ac), glucuronic acid (GlcA), mannose (Man) and id酸酸(IDOA)。通过与内质网和高尔基体相关的酶,将这些单糖的组装到聚糖中。单糖通过一种糖的异构碳和另一种羟基的糖苷碳连接在一起。糖苷键相对于异体碳(α与β)的方向影响聚糖的整体形状。因此,例如,乳糖galβ1-4Glc的符号是指通过葡萄糖C4上的β-糖苷键与羟基的半乳糖相关的。仅考虑这些因素,就有
通过转染短单链寡脱氧核糖核苷酸(SSODN),可以将小基因组改变引入高精度的哺乳动物细胞中。ssodns在DNA复制过程中集成到基因组中,但是由DNA不匹配修复(MMR)易于检测所得的杂化,从而阻止了有效的基因修饰。我们以前已经证明,当Ssodn中的核苷酸不匹配是锁定的核酸(LNA)时,可以避免MMR的抑制作用。在这里,我们揭示了LNA修饰的SSODN(LMOS)并未作为哺乳动物细胞中的完整实体整合,而是在靶杂交之前和之后被严重截断。我们发现,LMO的5'-arm臂中的单个额外(非LNA修饰)突变影响靶向效率,并激活了MMR途径。相比之下,3'-ARM中的其他突变不会影响靶向效率,并且不受MMR的影响。甚至更引人注目的是,3'-arr中的同源性在很大程度上是有效靶向的,暗示了大量的3'末端修剪。我们提出了一个在包括LMO降解的哺乳动物细胞中LMO指导基因修饰的精制模型。
Mammalian gut microbiome and brain development: A comprehensive review Farhad Mashayekhi*, Zivar Salehi Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran * Corresponding author's Email: mashayekhi@guilan.ac.ir ABSTRACT Both internal and external environmental cues during prenatal life have been shown to play an important role in mammalian brain development.流行病学数据表明,自闭症和精神分裂症等神经发育疾病之间可能存在共同的联系,以及产前时期的微生物病原体感染。由于其广泛的表面积,肠道暴露于广泛的外部影响。通过与肠道中的有益微生物一起工作,大脑可以有效地处理每天进入肠道的大量化学信号。哺乳动物中的大多数细菌位于结肠。鉴于它们在哺乳动物体内的存在已有数百万年了,因此微生物与动物共同发展是合理的。最近的环境研究已经深入研究了微生物核脑轴的假设,以阐明肠道微生物群对哺乳动物大脑的影响。细菌细胞壁的某些成分具有穿越胎盘并到达大脑的能力。Toll样受体两种激活导致调节发育和神经发生的转录因子的表达增加。研究揭示了微生物群体控制的微生物活性产生的细胞因子的作用与神经发生过程之间的新联系。本综述探讨了肠道微生物组(GM)对哺乳动物神经发生,髓鞘形成和血脑屏障的影响。研究结果支持GM影响神经干细胞和神经发生的行为的结论,这对于哺乳动物的脑发育至关重要。此外,肠道微生物群的障碍会导致异常的神经发生和哺乳动物脑癌变。
分布式强化学习 (dRL) —— 学习预测的不仅是平均回报,还有回报的整个概率分布 —— 在广泛的基准机器学习任务中取得了令人印象深刻的表现。在脊椎动物中,基底神经节强烈编码平均值,长期以来被认为是实现 RL 的,但对于该回路中的神经元群是否、在何处以及如何编码有关奖励分布高阶矩的信息知之甚少。为了填补这一空白,我们使用 Neuropixels 探针来敏锐地记录执行经典条件反射任务的训练有素、缺水的小鼠的纹状体活动。在几个表征距离测量中,与相同奖励分布相关的气味彼此之间的编码相似度要高于与相同平均奖励但不同奖励方差相关的气味,这与 dRL 的预测一致,但不是传统 RL。光遗传学操作和计算建模表明,遗传上不同的神经元群编码了这些分布的左尾和右尾。总的来说,这些结果揭示了 dRL 与哺乳动物大脑之间显著的融合程度,并暗示了同一总体算法的进一步生物学专业化。