欧盟网络安全局 (ENISA) 是欧盟致力于实现全欧洲高水平网络安全的机构。欧盟网络安全局成立于 2004 年,并得到《欧盟网络安全法》的加强,该局致力于制定欧盟网络政策,通过网络安全认证计划提高 ICT 产品、服务和流程的可信度,与成员国和欧盟机构合作,并帮助欧洲为应对未来的网络挑战做好准备。通过知识共享、能力建设和提高认识,该局与其主要利益相关者合作,加强对互联经济的信任,提高欧盟基础设施的弹性,并最终确保欧洲社会和公民的数字安全。有关 ENISA 及其工作的更多信息,请访问:www.enisa.europa.eu。
摘要 - 在开放环境中的自动驾驶机器人导航和操纵需要推理并通过闭环反馈进行重新掌握。我们提出了Come-Robot,这是使用GPT-4V视觉基础模型的第一个闭环框架,用于在现实世界中的开放式推理和自适应计划。我们精心构建了一个用于机器人探索,导航和操纵的动作原始库,在任务计划中用作GPT-4V的可呼叫执行模块。在这些模块的顶部,GPT-4V充当可以完成多模式推理的大脑,使用代码生成动作策略,验证任务进度并提供用于重新启动的反馈。这样的设计使得 - 机器人能够(i)积极地感知环境,(ii)执行定位的过程,以及(iii)从失败中恢复。通过涉及8个挑战现实桌面和操纵任务的全面实验,与现状的基线方法相比,任务成功率显着提高(25%)我们进一步进行全面的分析,以阐明演员的设计如何促进故障恢复,自由形式的指导跟随和长期地平线任务计划。
抽象的微流体技术促进了对流体混合和组件之间相互作用的精确控制,包括自组装和降水。它为准确制造颗粒提供了新的选择,并具有推进微/纳米颗粒药物输送系统(DDSS)的重要潜力。已经探索了各种微通道/微流体芯片以构建微/纳米颗粒DDS。通过微流体技术对粒径,形态,结构,刚度,表面特征和弹性的精确操纵依赖于特定的微通道几何设计以及外源能量的应用,并依赖于流体运动的原理。因此,这可以对关键质量属性(CQA)(例如粒径和分布,封装,效率,药物负荷,体外和体内药物输送率,ZETA电位和靶向功能),用于微型/纳米型ddss。在这篇综述中,我们对微流体技术进行了分类,并探讨了过去5年(2018 - 2023年)的新型微通道结构的最新研究发展及其在微型/纳米型DDS中的应用。此外,我们阐明了微流体技术的最新操纵策略,这些技术影响了与微/纳米/纳米细胞DDSS CQA相关的基础结构。此外,我们还提供了有关新型微/纳米颗粒DDS的背景下微流体技术所面临的工业应用和挑战。
为回应俄罗斯入侵乌克兰,包括美国和欧盟成员国在内的许多国家最近对俄罗斯实施了严厉的经济制裁。尽管这些制裁中有许多是金融性质的——冻结俄罗斯资产或阻止金融交易——但其他制裁则直接限制国际贸易。1 如何设计这些贸易限制,以在制裁国成本有限的情况下实现其目标?大量关于制裁设计的文献已经探讨了这个问题,但很少从纯粹的经济角度出发。这些文献的一个分支汇编了详细的案例研究,最近还汇编了综合数据库,强调了成功和不成功的历史制裁的制度背景(Hufbauer 等人,1990 年;Pape,1997 年;Felbermayr 等人,2020 年;Demena 等人,2021 年)。其他研究考虑了制裁应如何针对特定的“战略”商品(例如用于发动战争的武器或可能有助于未来军事力量的技术)或具有政治权力的特定行为者(Førland,1991;Cortright 等人,2002)。另一个重点是制裁如何影响民族国家之间以及民族国家内部、统治精英与普通公民之间的博弈论互动(Eaton 和 Engers,1992;Morgan 和 Bapat,2003;Baliga 和 Sj¨ostrom,2022)。与这些文献不同,我采取了典型的经济视角,询问哪些国际贸易限制可以最大限度地提高受制裁国的经济成本,同时使制裁国的成本最低。2 虽然这种经济视角在学术文献中尚属新鲜事物,但在许多政策制定者的方法和语言中已经很明显:
由于标准体外受精技术在马身上尚不可行,因此人们已使用多种不同技术来制造马胚胎用于研究。其中一种方法是孤雌生殖,即在没有引入精子的情况下诱导卵母细胞成熟为胚胎状状态,因此它们不被视为真正的胚胎。另一种方法是体细胞核移植 (SCNT),即将现存马的体细胞核插入去核的卵母细胞中,从而产生供体马的遗传克隆。由于美国马卵母细胞供应有限,研究人员已研究将马体细胞核与其他物种的卵母细胞相结合以制造用于研究的胚胎的可能性,但迄今为止尚未成功。人们对使用暴露于外源 DNA 的精子生产转基因动物的兴趣也日益浓厚。成功创建转基因马胚泡表明精子介导基因转移 (SMGT) 具有良好的前景,但这种方法并不适用于基因治疗等其他应用,因为它不能用于诱导靶向突变。这就是 CRISPR/Cas9 等技术至关重要的原因。在这篇评论中,我们认为孤雌生殖、SCNT 和跨物种 SCNT 可以被视为基因操作策略,因为它们可以产生与亲本细胞基因相同的胚胎。在这里,我们描述了这些方法的执行方式及其应用,还描述了用于直接修改马胚胎的几种方法:SMGT 和 CRISPR/Cas9。
ATP ATP腺苷-5'-三磷酸凸轮钙调蛋白CARQ CAQ+激活的Rho蛋白,带有嵌入的IQP Ceru ceru cerulean,相当于CFP CFP CFP CyAn荧光蛋白 Dulbecco's modified eagle medium FBS Fetal Bovine Serum FKBP12 12-kDa FK506 and rapamycin-binding protein FRB FKBP-rapamycin binding domain FRET Fluorescence resonance energy transfer GST Glutathione S-transferase His Polyhistidine-tag IRES Internal ribosomal entry site LB Luria Broth LOV Light-oxygen-voltage域,lov2域Lovs1K Lov2结构域与刺激1 c末端碎片MCS多个克隆位点MLCKP肌球蛋白轻链激酶激酶肽MRFP单体红色荧光蛋白相当于RFP,相当于RFP NES核出口NLS NLS NLS信号NLS信号NLS核定位PBS PBS PBS磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐酶磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐反应pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu PKC Protein kinase C pLyn Palmitoylation sequence of Lyn kinase RFP Red fluorescent protein, equivalent to mRFP SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis SH3 SRC Homology 3 Domain TEV Tobacco etch virus TEVp Tobacco etch virus protease TS Temperature-sensitive tsTEVp Temperature-sensitive tobacco蚀刻病毒蛋白酶tvmvp烟草静脉斑点病毒蛋白酶蛋白酶ven venus,相当于YFP YFP YFP黄色荧光蛋白,相当于Ven
首先,我们不应该假设情感计算技术将按计划工作。在最基本的层面上,他们可能会误解人们,并将一个人的行为归因于另一个人。即使他们能够始终如一地识别人和面孔,机器也可能失败。心理学研究人员已经证明,面部和表情不一定巧妙地绘制到特定的特征和情感上,更不用说涉及到参与或侵略检测中更广泛的精神状态了。正如丽莎·巴雷特(Lisa Barrett)和她的同事所报告的那样:“同一情感类别的实例既不是通过一组普通的面部运动来可靠地表达的,也不是从一组普通的面部运动中表达出来的(Barrett等人。2019:3),因此面部的交流能力受到限制。误解的危险是明确的,并且在通过面部分析量化参与的努力中存在明显的危险。
摘要 - 在3D中了解我们世界的动态对于机器人应用的性能和稳健性至关重要。尽管最近的进度已与视觉模型和体积渲染结合起来提供语义3D表示形式,但大型模型的推理时间既不是实时机器人操作的所需更新速度。在这项工作中,我们建议将“对象”注入基于3D高斯人的语义表示[1]。具有相同语义标签的高斯人可以一起初始化和更新,从而导致快速更新,以响应机器人和对象运动。所有必要的语义信息都是从验证的基础模型的第一步中提取的,从而规避了大型模型的推理瓶颈,但仍获取语义信息。只有三个相机视图,我们提出的表示形式可以实时捕获30 Hz的动态场景,这对于大多数操纵任务就足够了。通过基于我们的对象感知的高斯分裂来利用表示形式,我们能够求解语言条件的动态握把,为此,机器人抓取了开放词汇查询指定的动态移动对象。我们还使用该表示形式通过行为克隆来训练视觉运动策略,并表明该策略通过预审计的编码者获得了基于图像的策略的可比结果。视频https://object-aware-gaussian.github.io
衣原体沙眼,一种衣原体,对人类健康的影响最大,是细菌性传播疾病的主要原因,并且在所有Chamydia spp中都可以预防失明。物种。胸部寄生虫的强制性细胞内寄生虫和独特的双相发育周期是开发遗传操作工具的主要障碍。过去十年见证了对气管梭菌的遗传操纵,包括化学诱变,基于II组内含子的靶向基因敲除,荧光报告的等位基因交换诱变(FRAEM),CRISPR干扰(CRISPRI)和最近开发的转载体诱变。在这篇综述中,我们讨论了沙眼梭状芽孢杆菌的遗传操纵的当前状态,并突出了衣原体遗传学新生田中的新挑战。
保留所有权利。未经许可就不允许重复使用。(未经同行评审)是作者/资助者,他已授予Biorxiv的许可,以永久显示预印本。此预印本的版权持有人。http://dx.doi.org/10.1101/816835 doi:Biorxiv Preprint首次在线发布,2019年10月24日;