精确的植物基因组编辑技术为加速作物改善和发展更可持续的农业系统提供了新的机会。尤其是原核生物衍生的CRISPR平台可以精确地操纵作物基因组,从而能够产生高产量和耐压力的作物品种。纳米技术有可能通过引入快速,通用递送方法来以物种独立的方式编辑植物基因组的可能性,从而进一步催化新型分子工具箱的发展。从这个角度来看,我们强调了纳米颗粒如何帮助释放CRISPR/CAS技术在靶向操纵植物基因组以改善农业产量方面的全部潜力。我们讨论了当前的挑战,妨碍了纳米颗粒的植物基因编辑研究和应用中的应用,并突出了理性纳米颗粒设计如何克服它们。最后,我们研究了监管框架和社会接受对发展中国家纳米精确育种的未来的影响。
Kasturi Shikshan Sanstha的药学学院,印度Shikrapur,摘要:纳米技术是一门科学,以10米的规模处理物质,也是针对原子和分子量表进行操纵物质的研究。 最近,像纳米颗粒这样的颗粒系统已被用作改变和改善人类生活质量的物理方法。 由于它们的多功能性和广泛的性能,因此增加了用于治疗应用的广泛药物的载体的潜在用途。 在本综述中讨论了纳米机构及其应用的体系方法。关键字:纳米颗粒,制备评估方法,给药途径。Kasturi Shikshan Sanstha的药学学院,印度Shikrapur,摘要:纳米技术是一门科学,以10米的规模处理物质,也是针对原子和分子量表进行操纵物质的研究。最近,像纳米颗粒这样的颗粒系统已被用作改变和改善人类生活质量的物理方法。由于它们的多功能性和广泛的性能,因此增加了用于治疗应用的广泛药物的载体的潜在用途。在本综述中讨论了纳米机构及其应用的体系方法。关键字:纳米颗粒,制备评估方法,给药途径。
在开发SARNA-LNP COVID-19疫苗时,精密纳米系统证明了对下游过程参数进行早期测试的重要性。这种治疗性的重要步骤是内线稀释和缓冲液交换,以从配方中去除乙醇并准备在最终冷冻器中存储。在TFF处理LNP1之后,两种配方(LNP1和LNP2)最初在不同的流速和尺度(IGNITE,BLAZE,GMP)下产生了相似的CQA(粒径,多分散性和包封效率),而LNP2的大小显着增加,而LNP2则保持了这些特征。这项研究表明,某些配方对下游过程敏感,并且通过较小规模测试配方尽早确定这些CPP可以节省时间,材料,并降低规模上的危险。
内在化(31,32)。生物大分子,例如蛋白质和核酸,具有较大的大小,可阻碍有效的细胞摄取。纳米颗粒,甚至比生物大分子大的纳米颗粒,也可以通过内吞途径进行内化(33)。此外,可以通过表面功能化来设计纳米颗粒,以满足基因递送(包括细胞摄取)的关键要求。例如,纳米颗粒的内吞作用可以通过靶向鳞茎形的膜内知来增强纳米颗粒。Shuvaev及其同事开发了纳米颗粒,具有口腔特定的抗体,用于通过小窝途径递送的有效递送(34,35)。可以通过增强的渗透性和保留率(EPR)(36 - 38)来实现目标区域中纳米颗粒的浓度增加。仅通过纳米颗粒的巨大大小,它们倾向于在肿瘤组织中积聚,这是由于通过病理血管生成形成的漏水血管。纳米颗粒的表面电荷是一个重要的生物物理参数,通常在纳米颗粒和靶向细胞之间逆转纳米 - 生物接口的静电吸引力。在癌症诊断和治疗学中,表面电荷驱动的靶向被证明对有效在癌症诊断和治疗学中,表面电荷驱动的靶向被证明对
我们通过层纳米颗粒(LBL NP)报告了与阳离子肿瘤 - 渗透肽(TPP)的表面功能化,同时保持颗粒稳定性和电荷特性。这种策略消除了对肽的结构修饰的需求,并使表面化学物质难以修改或通过共价共轭策略无法访问。我们表明,羧化和硫化的LBL NP都能够容纳线性和环状TPP,并使用基于荧光的检测测定法,以量化每NP的肽载荷。我们还证明了在吸附后保持TPP活性,这表明足够数量的肽具有适当的表面取向,从而有效地在体外摄入了功能化的NP,这是通过流式细胞仪和
SARS-CoV-2 可通过内吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。在这里,我们描述了一种溶酶体靶向的、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒内吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100 – 150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2 WA1 及其 Omicron 变体。细胞器靶向递送是抑制病毒感染的有效方法。
SARS-CoV-2 可通过胞吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。本文我们描述了一种溶酶体靶向、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入方式进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒胞吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100-150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2-WA1 及其 Omicron 变体。这项研究表明,细胞器靶向递送是抑制病毒感染的有效方法。
尘埃晶粒,通过与电子,离子和电场的相互作用获得的电荷促进了集体行为。对于许多应用,从纳米颗粒的产生[1,2]到污染控制[3,4],充电的尘埃颗粒最终使活跃的等离子体环境留下了随后的处理。因此,带电的灰尘晶粒经历了从活性等离子体区域的过渡,通过富含离子的等离子体余泽,并带有净正空气电荷,进入含有中性气体和长期自由基的平衡环境。早期观察[5-7]在低压下腐烂的等离子体中的尘埃[5-7]触发了对时间和空间余气等离子体中灰尘(DE)的调查[8-18]。相比之下,与低压的尘土飞扬的等离子体余滴相比,纳米颗粒与大气压力余潮等离子的相互作用构成了相对未开发的领域。Nevertheless, the synthesis of nanocrystals at atmospheric pressure provides a low cost method to produce and deposit nanoparticles [ 19 – 22 ] with a speci fi c structure [ 23 , 24 ] and optical properties [ 25 , 26 ], while the deposition of thin fi lms using atmospheric pressure plasmas represents a cost effective alternative to vacuum processes [ 27 – 30 ] and provides the potential to include nanoparticles [ 20 ].随着这些
Isyaka,M。S.,Odih,C.,Bakare,D.M.,Giza,A.M.,Ferdinand,C。和Abdullahi,M.A。 :纳米颗粒合成的脉冲式融化方法:评论Isyaka,M。S.,Odih,C.,Bakare,D.M.,Giza,A.M.,Ferdinand,C。和Abdullahi,M.A。:纳米颗粒合成的脉冲式融化方法:评论
1化学研究所,赫瓦贾(Khwaja)票价工程与信息技术大学,拉希姆·雅尔·汗(Rahim Yar Khan)64200,巴基斯坦2,巴基斯坦拉合尔·加里森大学化学系,巴基斯坦拉合尔大学,巴基斯坦3号,米安瓦利大学,米安瓦利大学,42200,42200,米安瓦利大学42200,42200,PAKISTAN 42200米安瓦利大学化学系,巴基斯坦42200,6拉合尔教育科学技术系化学系,拉合尔大学54770,巴基斯坦7 7770,巴基斯坦7物理系拉合尔大学拉合尔大学,巴基斯坦,巴基斯坦,巴基斯坦8号,化学和生物化学系,国王Saud Saud Saud Saud Saud Saud Saud Saud Saud Saud Saud Saud Saud 38040, P.O.Box-2455,Riyadh 11451,沙特阿拉伯10混合材料中心(HMC),Sejong University,Sejong University,Seoul University,Seoul 05006,韩国共和国11纳米技术和高级材料工程系,Sejong Republic,Sejong University,Sejong University,Seoul University,Seoul 05006,韩国Box-2455,Riyadh 11451,沙特阿拉伯10混合材料中心(HMC),Sejong University,Sejong University,Seoul University,Seoul 05006,韩国共和国11纳米技术和高级材料工程系,Sejong Republic,Sejong University,Sejong University,Seoul University,Seoul 05006,韩国