两千年来,结核病 (TB) 夺走的生命比世界上任何其他传染病都要多。2021 年,世界卫生组织 (WHO) 估计有 1060 万人被诊断出患有结核病,导致 140 万 HIV 阴性患者死亡。耐多药结核病 (MDR-TB)(定义为至少对利福平 (RIF) 和异烟肼 (INH) 具有耐药性)和广泛耐药结核病 (XDR-TB) 的出现是未来几年要克服的主要挑战。我们最近对该领域的投资和研究工作进行了广泛的分析,总体目标是到 2030 年实现消除结核病的既定里程碑。在过去几年中,在将多种有前景的化合物推进到临床开发阶段方面取得了显着进展,每种化合物都具有不同的作用机制。但值得注意的是,已经出现了对目前某些抗结核药物产生耐药性的分枝杆菌菌株。创新的蛋白水解靶标嵌合体 (PROTACs) 蛋白质降解方法的探索已成为发现新型抗菌药物的可行途径。虽然泛素系统是真核细胞独有的,但某些细菌使用类似的降解系统,该系统依赖于 ClpC:ClpP (ClpCP) 蛋白酶对磷酸化精氨酸残基 (pArg) 的识别,从而导致蛋白质降解。在这篇评论文章中,我们描述和分析了利用细菌蛋白水解机制 (BacPROTACs) 的 PROTACs 设计新型抗结核药物的进展。范围声明。由于耐药菌株的出现,开发用于治疗结核病的新型药物被认为迫切需要。在此背景下,引进能够减轻疾病并实现世界卫生组织所概述的目标的新技术势在必行。在创新策略中,降解对杆菌生存至关重要的蛋白质有望产生新药物,特别是那些对治疗潜伏(非复制性)结核分枝杆菌有效的药物。从这个角度来看,我们介绍了结核分枝杆菌治疗领域取得的进展和遇到的障碍
脑转移是一种常见现象(1),多见于晚期非小细胞肺癌(NSCLC)的初诊、治疗中或治疗后。脑转移的治疗取决于肿瘤的大小、数量、位置以及其他因素,如东部肿瘤协作组体能状态(ECOG PS)、年龄等(2)。具体来说,当转移灶少于3个时,可优先考虑手术或立体定向放射外科(SRS)治疗,而当转移灶多于3个时,全脑放疗(WBRT)可能更有优势。在精准医疗的背景下,过去几十年来,晚期NSCLC的治疗取得了进展,包括NSCLC脑转移的治疗。例如,对于晚期NSCLC患者,应用具有特异性靶点的相应药物,预后明显改善(3)。小分子药物被广泛认为能够有效穿透血脑屏障(BBB),对脑转移患者具有良好的疗效(4)。遗憾的是,由于分子靶向治疗覆盖范围有限,例如,晚期NSCLC中表皮生长因子受体(EGFR)突变的发生率仅为20–30%,间变性淋巴瘤激酶(ALK)4易位的发生率仅为3–5%,因此对于大多数伴有脑转移的晚期NSCLC仍然缺乏有效的治疗手段(2)。
急性呼吸道感染(ARIS)是整个生命周期发病率和死亡率的主要原因。在全球范围内,估计每年发生的170亿ARI,占儿童死亡人数240万人(> 740,000人死亡)[1]。尽管这些ARI中的大多数是由呼吸道病毒引起的,但大多数严重或致命的病例是由细菌呼吸道病原体引起的。越来越多地,上呼吸道(URT)中的共生微生物会影响呼吸道病毒感染的风险和严重程度,以及细菌病原体对定殖和感染的抗性。因此,人们对利用这些微生物 - 微生物或微生物 - 主机相互作用的兴趣越来越多,以制定新的ARI策略或治疗[2]。尽管益生菌的现代历史可以追溯到一个多世纪以来,但活细菌菌株的鼻内给药将代表我们预防和治疗ARIS的方法的转变。这种鼻腔益生菌的必要特征将包括粘附上皮并成功地定居人类的能力,缺乏对呼吸性上皮细胞的细胞毒性,对地平线基因转移和移动遗传元件的某种程度的抵抗力,低倾向,低倾向,可侵犯宿主组织,使宿主的组织以及可用的可用抗药性可用的抗生素。下面,我们描述了一种研究的细菌物种,即dolosigranulum pigrum,越来越多地将其视为人类URT中的基石物种,也被视为预防ARI预防或治疗的有希望的鼻益生菌候选者。
骨关节炎(OA)是一种退化性疾病,导致社会经济负担很高和残疾率。膝关节通常是受影响最大的,其特征是逐渐破坏关节软骨,软骨下骨重塑,骨粘膜的形成和滑膜肿瘤。目前对OA的管理主要集中于症状缓解,无助于减慢疾病的进步。最近,间充质干细胞(MSC)及其外泌体在再生疗法和组织工程区域引起了显着关注。临床前研究表明,作为生物活性因子载体,MSC衍生的外泌体(MSC-EXOS)在无细胞的OA治疗方面具有有希望的结果。本研究回顾了各种MSC-EXO在OA处理中的应用,并探讨了潜在的潜在机制。此外,还讨论了当前的策略和未来的策略和未来的观点,用于利用工程MSC-Exos以及它们相关的挑战。
使用三种不同模型的黑色素瘤细胞系(CKIT,BRAF或NRA中的突变)实验。与其敏感的对应物相比,我们的发现始终显示出对靶向疗法的耐药性,分别获得靶向疗法的抗性,分别获得了对靶向疗法的耐药性。在mRNA和蛋白质水平上都观察到了这种增加(图2B,C)。此外,发现在Na+/K+-ATPaseαPUMP的同工型中,ATP1A1在敏感和耐药的MM074和HBL细胞系中均具有最高表达,并比较了四个同工型(ATP1A1-4)(ATP1A1-4)(图2D)。值得注意的是,MM161和MM161-R细胞系也表现出高水平的ATP1A3表达。这些结果提供了进一步的证据
摘要尽管在治疗转移性黑色素瘤方面取得了进步,但许多患者对靶向疗法表现出抗性。我们的研究重点是ATP1A1,这是一种与癌症发展相关的钠泵亚基。我们旨在评估黑色素瘤患者的ATP1A1预后价值,并检查其配体Bufalin,体外和体内黑色素瘤细胞系的影响。高ATP1A1表达(IHC)与黑色素瘤患者的总体存活率降低相关。 对BRAF抑制剂的抗性与患者活检(IHC,QPCR)和细胞系(Western blot,QPCR)的ATP1A1水平升高有关。 此外,基于癌症基因组图集(TCGA)数据库和Verfaillie增殖基因签名分析的数据,高的ATP1A1 mRNA表达与分化/色素沉着标记正相关。 bufalin在小窝(接近连接测定法)中特异性靶向ATP1A1,并影响SRC磷酸化(Western blot),从而破坏了多个信号通路(磷酸激酶阵列)。 在体外,Bufalin在ATP1A1(siRNA实验)上作用于ATP1A1(siRNA实验),并在体内使用裸小鼠异种移植模型通过连续的Bufalin通过渗透泵递送,从而诱导黑色素瘤细胞系凋亡。 总而言之,我们的研究表明,ATP1A1可以作为患者生存的预后标志物,也可以作为对BRAF抑制剂治疗的反应的预性标记。 通过靶向ATP1A1,Bufalin抑制细胞增殖,体外诱导凋亡,并有效抑制小鼠的肿瘤发育。高ATP1A1表达(IHC)与黑色素瘤患者的总体存活率降低相关。对BRAF抑制剂的抗性与患者活检(IHC,QPCR)和细胞系(Western blot,QPCR)的ATP1A1水平升高有关。此外,基于癌症基因组图集(TCGA)数据库和Verfaillie增殖基因签名分析的数据,高的ATP1A1 mRNA表达与分化/色素沉着标记正相关。bufalin在小窝(接近连接测定法)中特异性靶向ATP1A1,并影响SRC磷酸化(Western blot),从而破坏了多个信号通路(磷酸激酶阵列)。在体外,Bufalin在ATP1A1(siRNA实验)上作用于ATP1A1(siRNA实验),并在体内使用裸小鼠异种移植模型通过连续的Bufalin通过渗透泵递送,从而诱导黑色素瘤细胞系凋亡。总而言之,我们的研究表明,ATP1A1可以作为患者生存的预后标志物,也可以作为对BRAF抑制剂治疗的反应的预性标记。通过靶向ATP1A1,Bufalin抑制细胞增殖,体外诱导凋亡,并有效抑制小鼠的肿瘤发育。因此,我们的发现强烈支持ATP1A1作为一个有前途的治疗靶标,Bufalin是破坏其肿瘤促进活性的潜在药物。
摘要 - 我们提出了一种用于开发可进行逻辑控制器(PLC)恶意软件的新方法,该方法被证明比当前策略更灵活,弹性和影响力。虽然先前对PLC的攻击感染了PLC计算的控制逻辑或固件部分,但我们提出的恶意软件专门感染了PLC中新兴嵌入式Webervers托管的Web应用程序。此策略允许恶意软件使用Admin Portal网站公开的合法Web应用程序接口(API)偷偷地攻击基础现实世界机械。此类攻击包括伪造传感器读数,禁用安全警报和降解物理执行器。此外,这种方法比现有的PLC恶意软件技术(控制逻辑和固件)具有显着优势,例如平台独立性,易于放弃和更高的持久性。我们的研究表明,工业控制环境中Web技术的出现引入了IT域或消费者IoT设备中不存在的新安全问题。根据PLC控制的工业过程,我们的攻击可能会导致灾难性事件甚至丧生。,我们通过使用该恶意软件在广泛使用的PLC模型上实现了这种恶意软件的原型实现来验证这些主张,通过利用我们在研究中发现的零日漏洞,这是通过广泛使用的PLC模型进行的。我们的调查表明,每个主要的PLC供应商(全球市场份额的80%[1])都会产生一个容易受到我们拟议的攻击载体的plc。最后,我们讨论潜在的对策和缓解。
新闻稿 新加坡,2023 年 11 月 27 日 新加坡南洋理工大学科学家在海洋塑料垃圾上繁茂的细菌和真菌群落中发现潜在威胁和有希望的资源 新加坡南洋理工大学 (NTU Singapore) 的一组科学家在被冲上新加坡海岸的塑料垃圾上繁茂的细菌和真菌群落中发现了潜在威胁和有希望的资源。 当塑料进入海洋时,微生物会附着并在它们中定殖,形成一个被称为“塑料球”的生态群落。 尽管全球海洋中有数百万吨的塑料垃圾,但人们对塑料球如何在热带海洋环境中组装和与塑料宿主相互作用知之甚少。 为了了解塑料与微生物的相互作用,NTU 的研究人员提取了从新加坡 14 个沿海地点收集的塑料球的 DNA 信息(见下图)。 他们发现样本上繁茂着潜在的食塑细菌和有害微生物。这项研究于 9 月发表在《环境国际》杂志上,是针对东南亚热带海洋和沿海环境(包括珊瑚礁、红树林、海草床、海滩和开阔水域)进行的少数塑料圈研究之一。这项研究的主要作者、新加坡环境生命科学工程中心 (SCELSE) 的 NTU 博士生 Jonas Koh 表示:“塑料圈可以影响塑料碎片的命运,例如将其分解成微塑料,导致它们下沉或漂浮。然而,人们对热带沿海海洋环境中塑料圈中的微生物种类知之甚少。它们如何相互作用?塑料碎片如何影响它们的发展?我们想知道这些问题的答案,这可以帮助决策者做出明智的决定,以减少对我们东南亚海洋生态系统的潜在威胁。”塑料圈影响沿海生态系统的健康
摘要在过去的20年中,癌症干细胞(CSC)已被确定为癌症发生,进展,化学降低,复发和转移的根本原因。靶向CSC是癌症管理和治疗的新型治疗策略。肝癌(LC)是一种恶性疾病,可能危害人类健康。研究越来越多地表明,肝机械微环境的变化是触发肝癌的发生和发展的主要驱动因素。在这篇综述中,我们总结了对肝脏癌症中肝机械 - 微环境和肝癌干细胞(LCSC)在肝癌进展中的作用的最新理解。我们还讨论了肝癌组织的机械异质性与LCSC募集和转移之间的关系。最后,我们强调了LCSC中潜在的机械敏感分子和肝癌的机械疗法。了解机械环境和LCSC的作用和调节机制可能会提供对肝癌进展的基本见解,并有助于进一步发展新型治疗策略。关键词肝癌;机械 - 微环境;癌干细胞;肿瘤异质性;机械疗法
自2000年代以来,由于基因组医学的出现,医学肿瘤学领域已经取得了重大的科学进步。这已导致了分子生物学分析能力的重大进步,尤其是在DNA高通量测序技术(如下一代测序(NGS))中。这些医学进步伴随着靶向分子疗法的出现,这些疗法彻底改变了许多肿瘤的治疗策略。这些特定的疗法可能表现出不同的特征和功能,具体取决于它们作用的靶标(即细胞表面抗原,受体/信号转导途径,生长因子)(1)。结果,它们有助于调节细胞周期进程,细胞死亡,转移性传播和/或新血管生成。如今,许多靶向分子剂已得到食品药物管理局(FDA)的批准[即,抗皮肤生长因子受体(EGFR),抗植物衍生的生长因子受体(PDGFR),抗血管血管内血管内皮生长因子受体(VEGGFR),环蛋白依赖性KINERIB KINERIB(CDK)polotolib in-dolib-inim in-dip in-dive in-Cyclin-Kinib-of-Kinib-依赖性kinerib(CDK)对(PARP)抑制剂](1),在治疗广泛的晚期实体瘤方面取得了显着的临床成功。这些药物主要包括小分子酪氨酸激酶抑制剂(TKI)和单克隆抗体(mAb),它们根据目标水平的作用方式而有所不同。这些疗法可以单一靶向(即贝伐单抗,抗VEGF代理)