摘要:连接性大疱性表皮松解症 (JEB) 是一种严重的起泡性皮肤病,由编码皮肤完整性所必需的结构蛋白的基因突变引起。在本研究中,我们开发了一种适用于研究 JEB 相关 COL17A1 基因表达的细胞系,该基因编码 XVII 型胶原蛋白 (C17),C17 是一种跨膜蛋白,参与连接基底角质形成细胞和皮肤下层真皮。利用化脓性链球菌的 CRISPR/Cas9 系统,我们将 GFP 的编码序列与 COL17A1 融合,导致 GFP-C17 融合蛋白在人类野生型和 JEB 角质形成细胞中在内源性启动子的控制下组成性表达。我们通过荧光显微镜和蛋白质印迹分析证实了 GFP-C17 的准确全长表达和定位到质膜。正如预期的那样,GFP-C17 mut 融合蛋白在 JEB 角质形成细胞中的表达未产生特定的 GFP 信号。然而,在表达 GFP-COL17A1 mut 的 JEB 细胞中,CRISPR/Cas9 介导的 JEB 相关移码突变修复导致 GFP-C17 恢复,这在融合蛋白的全长表达、其在角质形成细胞单层质膜内以及 3D 皮肤等效物的基底膜区内的准确定位中显而易见。因此,这种基于荧光的 JEB 细胞系有可能作为筛选个性化基因编辑分子和体外应用以及在适当的动物模型中体内应用的平台。
摘要 增强 RNA 引导的 CRISPR-Cas9 核酸酶 (RGN) 的细胞内递送和性能仍然有需求。在这里,我们表明常用的化脓性链球菌 Cas9 (SpCas9) 蛋白的核转位并不理想。因此,我们通过为高特异性 eSpCas9(1.1) 核酸酶 (eCas9.2NLS) 赋予额外的核定位信号 (NLS) 来生成 eCas9.4NLS。我们证明与原型或优化的引导 RNA 偶联的 eCas9.4NLS 可实现有效的靶向 DNA 切割,并探究具有不同 NLS 组成的 SpCas9 蛋白在异染色质和真染色质中嵌入的靶序列上的性能。此外,在腺病毒载体 (AdV) 介导的 SpCas9 表达单元转移后,无偏定量免疫荧光显微镜显示 eCas9.4NLS 核富集水平比高特异性 eCas9.2NLS 的核富集水平高 2.3 倍。这种改进的核易位反过来在非同源末端连接修复靶向双链 DNA 断裂后产生了强大的基因编辑。具体而言,AdV 将 eCas9.4NLS 递送到肌肉祖细胞中,导致有缺陷的 DMD 等位基因(导致杜氏肌营养不良症 (DMD))的编辑频率明显高于编码亲本 eCas9.2NLS 蛋白的 AdV 所实现的编辑频率。总之,这项工作为整合病毒载体和优化的基因编辑技术以增强 RGN 递送和性能提供了强有力的理论基础。
遗传性视网膜营养不良(IRD)的特征是进行性光感受器变性和视力丧失。Usher综合征(USH)是一种综合征IRD,其特征是色素性视网膜炎(RP)和听力损失。USH在临床和基因上是异质的,最普遍的病因基因是USH2A。USH2A突变还解释了大量孤立的常染色体隐性RP(ARRP)病例。这种高预期是由于两个经常性的USH2A突变引起的,C.2276G> T和C.2299delg。由于USH2A cDNA的大尺寸,基因增强疗法是无法访问的。但是,CRISPR/CAS9介导的基因组编辑是可行的替代方法。我们使用了增强的链球菌链球菌(ESPCAS9)的特异性CAS9来成功实现诱导多能干细胞(IPSC)患者的两个最普遍的USH2A突变的无缝校正。我们的结果强调了促进ESPCAS9的高目标效率和特种型的功能。一致地,我们没有在校正后的IPSC中识别出任何非靶诱变,这些诱变也保留了多能性和遗传稳定性。此外,对USH2A表达的分析出乎意料地识别了与C.2276G> T和C.229999delg突变相关的异常mRNA水平,这些突变在校正后恢复。综上所述,我们有效的CRISPR/CAS9介导的USH2A突变校正策略为USH和ARRP患者提供了潜在治疗的希望。
摘要:化脓性链球菌 Cas9 蛋白 (SpCas9) 是微生物中基于 CRISPR 的免疫系统的一个组成部分,已广泛用于基因组编辑。该核酸酶与向导 RNA (gRNA) 形成核糖核蛋白 (RNP) 复合物,从而诱导 Cas9 结构变化并触发其切割活性。在这里,电子圆二色性 (ECD) 光谱用于确认 RNP 的形成并确定其各个组成部分。ECD 光谱具有区分 Cas9 和 gRNA 的特征,前者显示出负/正谱,最大值位于 221、209 和 196 nm,而后者显示出正/负/正/负模式,条带分别位于 266、242、222 和 209 nm。首次展示了 gRNA:Cas9 RNP 复合物的实验 ECD 光谱。它表现出双标记正/负 ECD 偶联,最大值位于 273 和 235 nm,并且与每个 RNP 成分的单独光谱有显著不同。此外,Cas9 蛋白和 RNP 复合物在 ECD 测量后仍保留生物活性,并且它们能够在体外结合和裂解 DNA。因此,我们得出结论,ECD 光谱可被视为一种快速且无损的方法,用于监测 Cas9 蛋白因 Cas9 和 gRNA 相互作用而发生的构象变化,以及鉴定 gRNA:Cas9 RNP 复合物。
摘要 细胞转录本编码有关细胞身份和疾病状态的重要信息。响应 RNA 生物标志物激活 CRISPR 有可能以时空精度控制 CRISPR 活性。这将能够将 CRISPR 活性限制在表达目标 RNA 生物标志物的特定细胞类型,同时防止其他细胞中出现不必要的活性。在这里,我们提出了一个简单而具体的平台,用于通过工程化脓性链球菌 Cas9 单向导 RNA (sgRNA) 来调节响应 RNA 检测的 CRISPR 活性。sgRNA 被设计成折叠成复杂的二级结构,在基态下抑制其活性。工程化的 sgRNA 在识别互补 RNA 后被激活,从而使 Cas9 能够发挥其功能。我们的方法使 CRISPR 能够在 HEK293T 细胞和斑马鱼胚胎中响应 RNA 检测而激活。迭代 21 设计优化允许开发用于生成能够检测所选 RNA 序列的 sgRNA 22 的计算工具。机制研究表明,工程 23 sgRNA 在 RNA 检测过程中被切割,并且我们确定了受益于 24 化学修饰的关键位置,以提高工程 sgRNA 在体内的稳定性。我们的传感器为使用 CRISPR 26 激活来响应内源性 RNA 生物标志物开发新的研究和治疗应用开辟了新的机会。 27
摘要 通过在具核梭杆菌中创建框内缺失突变来使基因失活非常耗时,并且大多数具核梭杆菌菌株在遗传上是难以处理的。为了解决这些问题,我们引入了一种基于核糖开关的可诱导 CRISPR 干扰 (CRISPRi) 系统。该系统采用核酸酶失活的化脓性链球菌 Cas9 蛋白 (dCas9),通过持续表达的单向导 RNA (sgRNA) 特异性地引导至目的基因。从机制上讲,这种 dCas9-sgRNA 复合物成为 RNA 聚合酶难以逾越的障碍,从而抑制了目标基因的转录。利用这个系统,我们首先研究了两个非必需基因 ftsX 和 radD,它们对于具核梭杆菌的胞质分裂和共聚集至关重要。添加诱导剂茶碱后,ftsX 抑制导致类似于染色体 ftsX 缺失的丝状细胞形成,而靶向 radD 则显著降低 RadD 蛋白水平,消除 RadD 介导的共聚集。随后将该系统扩展到探测必需基因 bamA 和 ftsZ,这两个基因对于外膜生物合成和细胞分裂至关重要。令人印象深刻的是,bamA 抑制破坏了膜完整性和细菌分离,阻碍了生长,而 ftsZ 靶向会在肉汤中产生细长的细胞,并且琼脂生长受到损害。对 F. nucleatum 临床菌株 CTI-2 和 Fusobacterium periodonticum 的进一步研究表明,靶向 tnaA 时吲哚合成减少。此外,沉默 F. periodonticum 中的 clpB 会降低 ClpB,从而增加热敏感性。总之,我们的 CRISPRi 系统简化了各种梭杆菌菌株的基因失活。
摘要 细胞转录本编码了有关细胞身份和疾病状态的重要信息。响应 RNA 生物标志物而激活 CRISPR 有可能以时空精度控制 13 CRISPR 活性。这将能够将 CRISPR 活性限制在表达目标 RNA 生物标志物的特定细胞类型,同时防止其他细胞中出现不必要的活性。在这里,我们提出了一个简单而具体的平台,用于通过工程化脓性链球菌 Cas9 单向导 RNA (sgRNA) 来调节响应 RNA 检测的 CRISPR 活性。sgRNA 被设计成折叠成复杂的二级结构,在基态下抑制其活性。识别互补 RNA 后,工程化的 sgRNA 19 被激活,使 Cas9 能够发挥其功能。我们的方法使 CRISPR 20 在 HEK293T 细胞和斑马鱼胚胎中响应 RNA 检测而激活。迭代 21 设计优化允许开发用于生成能够检测所选 RNA 序列的 sgRNA 22 的计算工具。机制研究表明,工程 23 sgRNA 在 RNA 检测过程中被切割,并且我们确定了受益于 24 化学修饰的关键位置,以提高工程 24 sgRNA 在体内的稳定性。我们的传感器为使用 26 CRISPR 激活来响应内源性 RNA 生物标志物开发新的研究和治疗应用开辟了新的机会。 27
基于 CRISPR/Cas9 的碱基编辑工具可实现精确的基因组安装,并为基因治疗带来巨大希望,而 Cas9 核酸酶的大尺寸、其对特定原间隔区相邻基序 (PAM) 序列的可靠性以及靶位偏好限制了碱基编辑工具的广泛应用。在这里,我们通过将胞嘧啶脱氨酶与来自 Streptococcus_gordonii_str._Challis_substr._CH1 (ancSgo-BE4) 和 Streptococcus_thermophilus_LMG_18311 (ancSth1a-BE4) 的两个紧凑的密码子优化的 Cas9 直系同源物融合来生成两个胞嘧啶碱基编辑器 (CBE),它们比化脓性链球菌 (SpCas9) 小得多,分别识别 NNAAAG 和 NHGYRAA PAM 序列。这两种 CBE 在胞嘧啶碱基编辑中都表现出高活性、高保真度、不同的编辑窗口和低副产物,并且在哺乳动物细胞中 DNA 和 RNA 脱靶活性极小。此外,在我们测试的靶位点上,这两种编辑器都表现出与两种基于 SpCas9 工程变体(SpCas9-NG 和 SpRY)的 CBE 相当或更高的编辑效率,它们与 ancSgo-BE4 或 ancSth1a-BE4 的 PAM 序列完美匹配。此外,我们通过 ancSgo-BE4 和 ancSth1a-BE4 成功生成了两种在 Ar 基因处带有临床相关突变的小鼠模型,它们在创始小鼠中表现出雄激素不敏感综合征和/或发育致死性。因此,这两种新型 CBE 拓宽了碱基编辑工具包,分别扩大了靶向范围和窗口,以实现有效的基因修饰和应用。
CRISPR/CAS系统通过诱导特定位点DNA双链断裂(DSB)启用基因编辑。但是,诱导的修饰的性质高度取决于用于DNA DSB修复的机制。非同源末端连接(NHEJ)介导的靶向诱变是由CRISPR/CAS诱导的一种已经标准应用的工具,可以在特定的基因组位点导致各种不同种类的突变。尽管如此,使用同源供体序列的精确基因组修饰仍然具有挑战性。的应用取决于较不频繁的同源重组(HR)需要进一步改进,以创建一种有吸引力的植物应用工具。着眼于这个问题,我们开发了植物基因靶向(IPGT)系统,该系统基于同时切除稳定集成的同源供体序列和目标位点中DSB的诱导。近年来,增强了基因靶向(GT)频率的几种改进。在为IPGT链球菌CAS9(SP Cas9)和金黄色葡萄球菌Cas9(SA Cas9)成功地促进了,我们能够使用lachnospileceae cas12a(lb cas12a)进一步改善该系统,这也可以在T-rich区域进行切割。 最近,我们测试了IPGT的LB CAS12A(TT LB CAS12A)的改进,耐温度的版本,并能够进一步提高GT效率。 在这里,我们详细介绍了使用TT LB Cas12a详细介绍最近发布的IPGT系统的实验程序。 ©2020作者。,我们能够使用lachnospileceae cas12a(lb cas12a)进一步改善该系统,这也可以在T-rich区域进行切割。最近,我们测试了IPGT的LB CAS12A(TT LB CAS12A)的改进,耐温度的版本,并能够进一步提高GT效率。在这里,我们详细介绍了使用TT LB Cas12a详细介绍最近发布的IPGT系统的实验程序。©2020作者。
绝大多数生物体中的 DNA 是生命的分子蓝图。DNA 中以序列形式存在的遗传密码首先以 RNA 的形式复制,然后进一步翻译为蛋白质。蛋白质在细胞中发挥结构或生化功能。1953 年,JD Watson 和 FHC Crick 报道了 DNA 的分子结构 [1]。从那时起,科学家们就一直试图开发能够操纵细胞和生物体遗传物质的技术。随着我们从细菌等低等生物转向人类等高等生物,基因操作变得越来越复杂和难以实现。许多生物体已被证明在遗传上难以处理,因为在这些生物体中基因操作仍然难以实现。随着 RNA 引导的 CRISPR-Cas9 系统的发现,一种简单有效的基因组工程方法现已成为现实。这项技术的发展使科学家能够修改各种细胞和生物体中的 DNA 序列,从而有可能改变生命的密码。基因组操作不再是实验瓶颈。如今,CRISPR-Cas9 技术已广泛应用于基础科学、生物技术和未来疗法的开发 [2]。法国微生物学家、德国柏林马克斯·普朗克病原体科学中心主任 Emanuelle Charpentier 和美国生物化学家、美国加州大学伯克利分校教授兼霍华德·休斯医学研究所研究员 Jennifer A. Doudna 因开发出一种基因组编辑方法而共同获得了 2020 年诺贝尔化学奖。该基因组编辑工具来自对一种名为化脓性链球菌的人类病原体 CRISPR-Cas9 系统的研究。