为了破译人脑的语言表示基础的算法,先前的工作通过对NLU任务进行了微调的预先调整的预先训练的人工神经网络(ANN)模型对大脑对语言输入的反应。然而,完整的微调通常会更新整个参数空间并扭曲预训练的功能,从而与大脑的强大多任务学习无关。及时调整可以保护预训练的权重,并学习特定于任务的嵌入以适合任务。迅速调整是否会产生代表,可以更好地说明大脑语言表示的比较?如果是这样,什么样的NLU任务会导致预先训练的模型更好地解码人脑中所代表的信息?我们通过比较神经解码中的迅速调整和微调的表示来调查这些问题,这预测了刺激引起的大脑活动的语言刺激。我们发现,在10个NLU任务中,全面的微调都没有明显胜过神经解码的迅速调整,这意味着一种更一致的调谐方法会产生代表性的代表,可以更好地与大脑数据相关。更重要的是,我们确定处理精细概念的任务意味着比其他任务更好地解码大脑激活模式的屈服表示,尤其是句法构成任务。这表明我们的大脑编码代表语言时浅层句法信息更细粒度的概念信息。
摘要 —我们介绍嵌入式数据表示,即使用与数据所指的物理空间、对象和实体深度集成的数据的视觉和物理表示。轻量级无线显示器、混合现实硬件和自动驾驶汽车等技术使得在上下文中显示数据变得越来越容易。虽然研究人员和艺术家已经开始创建嵌入式数据表示,但描述和比较这些方法所需的优势、权衡,甚至语言仍未被探索。在本文中,我们形式化了物理数据指称的概念——数据对应的现实世界实体和空间——并研究指称与其数据的视觉和物理表示之间的关系。我们区分了情境表示(显示靠近数据指称的数据)和嵌入式表示(显示数据以使其在空间上与数据指称相重合)。通过借鉴可视化、普适计算和艺术中的例子,我们探讨了空间间接、尺度和交互在嵌入式表示中的作用。我们还研究了非情境化、情境化和嵌入式数据显示之间的权衡,包括可视化和物理化。根据我们的观察,我们发现了嵌入式数据表示的各种设计挑战,并提出了未来研究和应用的机会。
理解生物和人工网络的运作仍然是一项艰巨而重要的挑战。为了确定一般原则,研究人员越来越有兴趣调查大量经过类似任务训练或生物学上适应类似任务的网络。现在需要一套标准化的分析工具来确定网络级协变量(例如架构、解剖大脑区域和模型生物)如何影响神经表征(隐藏层激活)。在这里,我们通过定义量化表征差异的广泛度量空间系列为这些分析提供了严格的基础。使用此框架,我们修改了基于典型相关分析和中心核对齐的现有表征相似性度量以满足三角不等式,制定了一个尊重卷积层中归纳偏差的新度量,并确定了近似欧几里得嵌入,使网络表征能够纳入几乎任何现成的机器学习方法中。我们在生物学(艾伦研究所脑观测站)和深度学习(NAS-Bench-101)的大规模数据集上展示了这些方法。在此过程中,我们确定了可根据解剖特征和模型性能进行解释的神经表征之间的关系。
我们的观点基于预测模型和预测表示之间的重要区别。预测模型是系统状态动态的概率分布。模型可以“向前运行”以生成有关系统未来轨迹的预测。这提供了相当大的灵活性:如果有足够的计算时间,具有预测模型的代理可以回答几乎任何有关未来事件概率的查询。然而,“如果有足够的计算时间”这一条件对预测模型在实践中的作用设置了关键限制。需要在严格的计算约束下快速行动的代理可能没有能力向其预测模型提出任意复杂的查询。然而,预测表示会缓存某些查询的答案,从而以有限的计算成本访问它们。1 这种效率提升的代价是灵活性的丧失:只有某些查询可以得到准确回答。
我们为基于链的3D发型几何形状引入了双层层次生成表示,该几何形状从粗,低通的过滤导型头发到富含高频细节的密集的人浓厚的发束。我们采用离散的余弦变换(DCT)将低频结构曲线与高频卷曲和噪声分开,从而避免了吉布斯在开放曲线中与标准傅立叶变换相关的吉布斯振荡问题。与从头皮UV地图网格中取样的导向头发可能会失去现有方法中发型的细节,我们的方法通过利用低通滤波的密集链中的k -Medoid集群中心来样本最佳的稀疏导向链,从而更准确地保留了发型的本质特征。拟议的基于自动编码器的生成网络,其启发的架构是受几何深度学习和隐式神经表示的启发,可促进灵活的,离网的导向链建模,并使从隐含的神经表示的原理上绘制任何数量和密度的密度和密度完成密集的链。经验评估证实了该模型产生令人信服的指导头发和密集链的能力,并提供细微的高频细节。1
重新恢复 - 代表,动机和兰兰二重性,从基础科学到消费者技术影响社会的许多进步是基于数学基础研究的。示例包括非欧盟几何(导致一般相对论,然后导致GPS导航);数字理论(导致公共密钥密码学,然后确保在线商业);和拓扑(在图像识别和医学诊断中应用)。这个博士网络,恢复:表示,动机和兰兰二重性,将在三个高度活跃的数学领域推进基础研究:表示理论,代数几何和数字理论。具体来说,使用动机领域的最新数学创新是几何表示理论和Langlands计划研究的最前沿。Rebold将建立一个欧洲博士候选人网络,该网络在数学领域的基础研究中表现出色,实现创新的培训格式,并与领先的欧洲量子计算公司建立合作伙伴,以组建一组,准备在学术界和工业界竞争性地职位。
摘要。尽管大规模预处理的视觉模型(VLM)尤其是在各种开放式播放任务中的剪辑,但它们在语义细分中的应用仍然具有挑战性,从而产生了带有错误分段区域的嘈杂分段图。在本文中,我们仔细地重新调查了剪辑的架构,并将残留连接确定为降低质量质量的噪声的主要来源。通过对剩余连接中统计特性的比较分析和不同训练的模型的注意力输出,我们发现剪辑的图像文本对比训练范式强调了全局特征,以牺牲局部歧视,从而导致嘈杂的分割结果。在响应中,我们提出了一种新型方法,该方法是分解剪辑的表示形式以增强开放式语义语义分割的。我们对最后一层介绍了三个简单的修改:删除剩余连接,实现自我关注并丢弃馈送前进的网络。ClearClip始终生成更清晰,更准确的绘制图,并在多个基准测试中胜过现有的方法,从而确认了我们发现的重要性。
较高感觉皮层中的语义表示构成了强大而灵活的行为的基础。这些代表的不满是在开发过程中以无监督的方式获得的,并且在有机体的寿命中不断地成为主要的主要主导。预测处理理论表明,这些表示从预测或重建感觉输入中出现。然而,众所周知,大脑会产生虚拟体验,例如在想象力和梦中,超越了以前经验丰富的投入。在这里,我们建议虚拟体验可能与塑造皮质表示的实际感觉输入一样重要。特别是,我们讨论了两种互补学习原则,它们通过虚拟经验的产生来组织表示形式。首先,“对抗性梦”提出,创意梦支持对抗性学习的皮质实现,在这种学习中,反馈和前进途径参与了试图互相愚弄的富有成效的游戏。第二,“对比性的梦”提出,通过尝试通过对比度学习过程将神经元表示与无关因素的不相关因素的不变性与变异因素相关。这些原理与已知的皮质结构和动力学以及睡眠现象学兼容,因此提供了有希望的方向,可以解释超出经典预测性处理范式的皮质学习。
机器人及时通过传感器数据构建持久,准确且可操作的模型的能力是自主操作的范围。在将世界表示为点云可能足以进行本地化时,避免障碍物需要更密集的场景表示形式。另一方面,更高级别的语义信息通常对于分解必要的步骤来完成一项复杂的任务,例如烹饪,自主是至关重要的。因此,迫在眉睫的问题是,手头机器人任务的合适场景表示是什么?这项调查提供了对关键方法和框架的全面回顾,这在机器人空间感知领域推动了进步,并特别关注了代表的历史演变和当前的趋势。通过将场景建模技术分类为三种主要类型(公式,公式和指标 - 语言流行),我们讨论了空间启示框架正在从构建世界的纯几何模型转变为更高级的数据结构的方式,这些模型包括更高级别的概念,例如对象实例和位置的概念。特别重点是实时同时定位和映射(SLAM)的方法,它们与深度学习的集成,以增强了鲁棒性和场景的理解,以及它们处理场景动态性的能力,作为当今驾驶Robotics研究的一些最热门的主题。我们在讨论方面的挑战和未来的研究方向的讨论中进行了结论,以建立适合长期自治的强大而可扩展的空间感知系统。
用法指南:请参阅https://eprints.bbk.ac.uk/policies.html的用法指南,或者请联系lib-eprints@bbbk.ac.uk。