指定癌细胞态和对治疗反应的机制尚不完全理解。在这里,我们显示的表观遗传重编程塑造了Schwannomas的细胞景观,Schwannomas是外周神经系统最常见的肿瘤。我们发现的schwannomas由2个摩尔组组成,这些基团由神经rest或神经损伤途径的激活区别,这些神经损伤或神经损伤途径指定肿瘤细胞状态以及肿瘤免疫微环境的结构。此外,我们发现放射疗法是通过表观遗传学和代谢重编程的神经chwannomas与免疫增强的schwan- Nomas相互转化的舒适性。为定义造型群群的定义机制,我们开发了一种同时询问染色质访问性和基因表达的技术,以及在单核中的遗传和治疗性扰动。我们的结果阐明了一个理解肿瘤进化的表观遗传驱动因素的框架,并建立了对癌细胞的表观遗传和代谢重编程的范式,该癌细胞构成了免疫微环境对放射疗法的反应。
生酮饮食 (KD) 已在众多临床研究和动物疾病模型中证明具有调节免疫反应和促进全身抗炎状态的益处。我们在此研究了生酮饮食对 SARS-CoV-2 感染后小鼠全身毒性的影响。我们的数据表明,在生酮饮食下,SARS-CoV-2 可减少体重减轻,并提高动物的整体存活率。多器官转录重编程和代谢重组的减弱表明生酮饮食可启动和减轻病毒引起的全身变化。我们观察到心脏中金属蛋白酶减少,炎症稳态蛋白转录增加,血清促炎症细胞因子(即 TNF- α、IL-15、IL-22、G-CSF、M-CSF、MCP-1)、炎症代谢标志物(即犬尿氨酸/色氨酸比率)和炎症前列腺素降低,表明 KD 感染动物的全身炎症减少。综上所述,这些数据表明 KD 可以改变 SARS-CoV-2 感染后动物的转录和代谢反应,改善小鼠健康状况,减少炎症,恢复氨基酸、核苷酸、脂质和能量货币代谢。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年11月27日发布。 https://doi.org/10.1101/2023.11.27.568858 doi:Biorxiv Preprint
代谢重编程和表观遗传修饰是癌细胞的显著特征。在癌细胞中,代谢途径活性在肿瘤发生和进展过程中发生变化,表明其具有受调控的代谢可塑性。代谢变化往往与表观遗传变化密切相关,例如表观遗传修饰酶的表达或活性改变,可能对细胞代谢产生直接或间接的影响。因此,探究表观遗传修饰调控肿瘤细胞代谢重编程的机制,对深入理解肿瘤的发病机制具有重要意义。本文主要介绍与癌细胞代谢调控相关的表观遗传修饰的最新研究,包括癌症背景下的葡萄糖、脂质和氨基酸代谢变化,并着重介绍与肿瘤细胞表观遗传修饰相关的机制。具体而言,我们讨论了DNA甲基化、染色质重塑、非编码RNA和组蛋白乳酸化在肿瘤生长和进展中的作用。最后,我们总结了基于肿瘤细胞代谢重编程和表观遗传变化的潜在癌症治疗策略的前景。
在肿瘤微环境中,免疫抑制调节细胞(TREG)的有效耗竭而不触发全身自身免疫性是癌症免疫疗法的重要策略。改性疫苗Ankara(MVA)是一种高度减弱的非复制疫苗病毒,具有悠久的人类使用史。在这里,我们报告了免疫激活重组MVA(RMVA,MVAδE5R-FLT3L-OX40L),其vacinia e5r基因的缺失(编码DNA传感器cyclic cyclice cgas,cgas,cgas的抑制剂),cgas和cgas的抑制剂,cgas和表达3个抑制剂) OX40L。肿瘤内(IT)RMVA(MVAδE5R-FLT3L-OX40L)产生有效的抗肿瘤免疫力,取决于CD8 + T细胞,CGAS/STING介导的介导的细胞溶质性DNA传感途径和I型I IFN信号。值得注意的是,它通过OX40L/OX40的相互作用和IFNAR信号传导来耗尽OX40 HI调节T细胞OX40 HI调节T细胞。用RMVA处理的肿瘤的单细胞RNA-SEQ分析显示OX40 HI CCR8 HI tregs的耗竭以及IFN反应性Tregs的膨胀。综上所述,我们的研究提供了通过免疫激活RMVA耗尽和重编程的肿瘤内Treg的概念证明。
代谢重编程是恶性肿瘤最重要的特征之一。具体而言,脂质代谢重编程通过重塑肿瘤微环境 (TME) 对癌症进展和治疗反应产生了显著影响。在过去的几十年里,免疫疗法彻底改变了晚期癌症的治疗格局。脂质代谢重编程在调节免疫微环境和癌症免疫治疗反应中起着关键作用。在这里,我们系统地回顾了脂质代谢重编程在肿瘤和TME免疫细胞中的特点、机制和作用,评估了各种细胞死亡方式(特别是铁死亡)对脂质代谢的影响,并总结了针对脂质代谢的抗肿瘤疗法。总的来说,脂质代谢重编程通过调节免疫微环境对癌症免疫治疗有着深远的影响;因此,针对脂质代谢重编程可能导致包括敏化免疫疗法在内的创新临床应用的发展。
引言肾脏在调节哺乳动物的葡萄糖稳态方面具有重要作用。在肾小球中过滤了大约180克/天葡萄糖,绝大多数被肾近端小管细胞(KPTC)重吸收,主要是通过钠 - 葡萄糖葡萄糖共转运蛋白2(SGLT2)(SGLT2)(SGLT2)(1-3)。在糖尿病中,葡萄糖吸附增加,从而加剧了高血糖症(3)。sglt2抑制剂(SGLT2I)诱导糖尿病,通常用于治疗糖尿病。引人注目的是,大规模试验始终显示SGLT2I有效地防止了肾功能的下降,并改善了有或没有糖尿病患者的充血性心力衰竭的心脏功能;这些改善包括对末期肾脏疾病的进展减慢,心力衰竭的住院时间较少,死亡率降低(4-10)。早期临床研究表明,SGLT2I对非酒精性脂肪肝病(NAFLD)患者也有益(11,12)。有趣的是,SGLT2I Canagliflozin已显示可延长老年男性啮齿动物的寿命(13)。SGLT2I的这些强大的多机构有益作用表明,通过增加糖尿的葡萄糖负荷减少葡萄糖负荷会诱导系统的代谢重编程,从而影响遥远器官的代谢。ferrannini及其同事表明,在2型糖尿病患者中,SGLT2I诱导的糖尿症与内源性葡萄糖产生的增加有关,胰岛素敏感性增强以及从碳水化合物到脂质的底物利用率转移(14,15);已经假设这种代谢转移介导了SGLT2I的有益心脏作用(2)。根据这一假设,糖尿降低
天使综合征 (AS) 是一种由大脑中泛素连接酶 E3A (UBE3A) 基因表达缺失引起的神经遗传疾病。UBE3A 基因在脑神经元中是父系印记。AS 的临床特征主要是由于大脑中母系表达的 UBE3A 缺失所致。大脑中存在父系 UBE3A 的健康拷贝,但被长非编码反义转录本 (UBE3A-ATS) 沉默。在这里,我们证明人工转录因子 (ATF-S1K) 可以在成年小鼠天使综合征 (AS) 模型中沉默 Ube3a-ATS 并恢复父系 Ube3a 的内源性生理表达。向尾静脉单次注射表达 ATF-S1K 的腺相关病毒 (AAV) (AAV-S1K) 即可实现全脑转导,并将神经元中的 UBE3A 蛋白恢复至野生型蛋白的 25%。ATF-S1K 治疗对靶位点具有高度特异性,在 AAV-S1K 给药 5 周后未检测到炎症反应。AAV-S1K 治疗 AS 小鼠在探索性运动(涉及粗大和精细运动能力的任务)中表现出行为恢复,类似于 AS 患者的低步行和速度。单次注射 AAV-S1K 治疗 AS 的特异性和耐受性表明 ATF 可作为 AS 的一种有前途的转化方法。
小细胞肺癌 (SCLC) 是一种高度致命的肺癌亚型,具有明显的神经内分泌样特征,占所有肺癌的 10%–15%。总体 5 年生存率仍然不到 10%。SCLC 的特点是早期转移,因此最大限度地减少了手术对患者的潜在益处。近几十年来,SCLC 的一线治疗仍然是依托泊苷和顺铂 (E/P) 联合化疗。尽管 E/P 治疗的反应率很高,但 SCLC 最终会复发,并且复发时几乎普遍对治疗有抵抗力,因此 SCLC 是一种难治性恶性肿瘤。此外,对 SCLC 转移和抵抗的分子机制的了解有限,极大地阻碍了 SCLC 总体生存率的提高。为了更好地了解 SCLC 的分子机制并发现潜在的治疗靶点,人们已经持续了几十年的广泛努力。最近,一些研究表明表观遗传修饰与 SCLC 有关,包括组蛋白修饰、DNA 甲基化和染色质可及性。有研究证明,NFIB 可通过广泛增加染色质可及性来促进 SCLC 转移 1 。特别值得注意的是,最近的一项研究表明,KMT2C 缺陷通过 DNMT3A 介导的表观遗传重编程(包括组蛋白和 DNA 低甲基化)促进 SCLC 转移 2 。这些研究表明,表观遗传重编程在 SCLC 中起着重要作用。在这篇综述中,我们总结并讨论了 SCLC 基础和转化研究的进展,这些进展揭示了