摘要:平面光学元件旨在将光学系统的片上微型化,用于高速和低功率操作,并集成薄和轻量级的组件。在这里,我们介绍了通过使用各向异性二维(2D)纤维的三维(3D)地形重建实现的,但在光学上的各向同性纤维,以平衡平面外和平面内的光学响应。我们通过纳米组结构底物对单层过渡金属二甲化合物(TMD)纤维的共形生长来实现这一目标。与LM轴相比相比,所得的纤维显示了增强角度性能的平面外敏感性增加,以增强角性能,在效率吸收中显示偏振各向同性,以及改善的光致发光发射发射纤维。我们进一步表明,这种光学性质的3D几何编程适用于不同的TMD材料,在整个可见范围内对光谱概括进行了介绍。我们的方法提出了一个强大的平台,可通过定制设计的光 - 物质相互作用来推进原子上稀薄的光学器件的开发。关键字:原子上薄的材料,TMD,保形生长,3D地形,光同时发生
由H.E.S.T.发行 澳大利亚有限公司ABN 66 006 818 895 AFSL 235249,HESTA ABN的受托人64 971 749 321。 此信息具有一般性。 它不考虑您的目标,财务状况或特定需求,因此您应该在做出决定之前先查看自己的财务状况和要求。 您可能希望在这样做时咨询顾问。 可以在hesta.com.au/tmd和Hesta for Mercy Products的Hestaformercy.com.au/tmd上找到Hesta产品的目标市场确定。 Before making a decision about HESTA or HESTA for Mercy products you should read the relevant Product Disclosure Statement (for a copy HESTA – call 1800 813 327 or visit hesta.com.au; HESTA for Mercy – call 1300 368 891 or visit hestaformercy.com.au) and consider any relevant risks (visit hesta.com.au/pds or hestaformercy.com. au/pds)。由H.E.S.T.发行澳大利亚有限公司ABN 66 006 818 895 AFSL 235249,HESTA ABN的受托人64 971 749 321。此信息具有一般性。它不考虑您的目标,财务状况或特定需求,因此您应该在做出决定之前先查看自己的财务状况和要求。您可能希望在这样做时咨询顾问。可以在hesta.com.au/tmd和Hesta for Mercy Products的Hestaformercy.com.au/tmd上找到Hesta产品的目标市场确定。Before making a decision about HESTA or HESTA for Mercy products you should read the relevant Product Disclosure Statement (for a copy HESTA – call 1800 813 327 or visit hesta.com.au; HESTA for Mercy – call 1300 368 891 or visit hestaformercy.com.au) and consider any relevant risks (visit hesta.com.au/pds or hestaformercy.com.au/pds)。
由于其独特的光学和电子特性,垂直的范德华异质结构(VDWH)引起了光电应用的大量关注,例如光检测,光收获和光发射二极管。为了完全利用这些特性,了解跨VDWH的界面电荷转移(CT)和重组动力学至关重要。然而,界面能量和缺陷态对石墨烯转变金属二北核化金(GR-TMD)VDWH的界面CT和重组过程的影响仍在争论中。在这里,我们研究了具有不同化学成分(W,MO,S和SE)的GR-TMD VDWH中的界面CT动力学和可调的界面能量。We demonstrate, using ultrafast terahertz spectroscopy, that while the photo-induced electron transfer direction is universal with graphene donating electrons to TMDs, its efficiency is chalcogen-dependent: the CT efficiency of S atom-based vdWHs is 3–5 times higher than that of Se-based vdWHs thanks to the lower Schottky barrier present in S-based vdWHs.相比之下,从TMD到GR的电子反传递过程定义了电荷分离时间,它依赖金属依赖性,并由TMDS的中间隙缺陷水平支配:W过渡金属基于vDWH的电荷分离极为长,远超过1 ns,这比基于MO的VDWH远超过了PS Experation 10 s的基于MO的VDWH。与基于MO的TMD相比,这种差异可以追溯到基于W的TMD中报告的更深层次的中间隙缺陷,从而导致了从被困状态到石墨烯的后电子转移的变化能量。我们的结果阐明了界面能量学和缺陷的作用,通过在GR-TMD VDWH中定制TMD的化学组成和重组动态,这是优化光电设备的优化,尤其是在光电检测领域中。
主动防御 (TBMD) 主动防御通过在飞行中摧毁战区导弹来防御它们。在导弹弹道的所有阶段(助推、助推后、中段和末端)都需要有交战能力,以防止点防御饱和、抵消弹头效应并确保在保卫关键资产时将泄漏降到最低。因此,主动防御必须包括纵深防御,以提供使用不同技术的多种交战机会,增加杀伤概率,并反击敌人的反制措施。主动防御可以包括太空、空中、地面和海基系统。如果部署了战略弹道导弹防御系统,主动 TMD 应该得到这些系统的支持(但不限于这些系统),以增强战区的防御能力。主动防御被认为是 TMD 能力的四大支柱之一。(JCS J-38 CONOPS)
利用第一性原理计算,我们研究了六种过渡金属氮化物卤化物 (TMNH):HfNBr、HfNCl、TiNBr、TiNCl、ZrNBr 和 ZrNCl 作为过渡金属二硫属化物 (TMD) 沟道晶体管的潜在范德华 (vdW) 电介质。我们计算了剥离能量和体声子能量,发现这六种 TMNH 是可剥离的并且具有热力学稳定性。我们计算了单层和体 TMNH 在平面内和平面外方向的光学和静态介电常数。在单层中,平面外静态介电常数范围为 5.04 (ZrNCl) 至 6.03 (ZrNBr),而平面内介电常数范围为 13.18 (HfNBr) 至 74.52 (TiNCl)。我们表明,TMNH 的带隙范围从 1.53 eV(TiNBr)到 3.36 eV(HfNCl),而亲和力范围从 4.01 eV(HfNBr)到 5.60 eV(TiNCl)。最后,我们估算了具有六个 TMNH 单层电介质和五个单层通道 TMD(MoS 2 、MoSe 2 、MoTe 2 、WS 2 和 WSe 2 )的晶体管的电介质漏电流密度。对于 p- MOS TMD 通道晶体管,30 种组合中有 25 种的漏电流小于六方氮化硼 (hBN),一种众所周知的 vdW 电介质。对于以 HfNCl 为栅极电介质的 ap -MOS MoSe 2 晶体管,预测最小双层漏电流为 1.15×10 -2 A/cm 2。据预测,HfNBr、ZrNBr 和 ZrNCl 也会在某些 p-MOS TMD 晶体管中产生微小的漏电流。
Abstract The assembly of monolayer transition metal dichalcogenides (TMDs) in van der Waals heterostructures yields the formation of spatially separated interlayer excitons (IXs) with large binding energies, long lifetimes, permanent dipole moments and valley-contrasting physics, providing a compelling platform for investigating and engineering spatiotemporal IX propagation with highly tunable动力学。进一步扭曲堆叠的TMD单层可以创建具有空间修改的带结构和不同的Moiré电位的长期周期性Moiré模式,具有定制的陷阱,这些陷阱可以引起与密度依赖性相变的强相关性,以调节激子运输。TMD异质结构中丰富的激子景观,加上Valleytronics和Twistronics的进步,对探索激子综合电路的巨大希望基于操纵激烈的扩散和运输。在这篇综述中,我们全面概述了了解IXS和Moiré激子的最新进展,特别关注了TMD异质结构中新兴的激子扩散和运输。我们强调通过各种方法对激子通量进行空间操纵,包括激子密度,介电环境,电场和结构工程,以进行精确控制。这种操纵激子扩散的能力为相互交流和信号处理提供了新的可能性,为在高性能光电上的激发应用铺平了道路,例如激发设备,valleytronic晶体管和光电探测器。我们终于通过概述了利用IX电流的观点和挑战来结束这项审查,用于下一代光电应用。
摘要:最近对过渡金属二硫属化物 (TMD) 纳米带的研究促进了这些尺寸受限晶体的受控生长合成策略的发展。我们展示了在由用磷化氢处理的 Si(001) 组成的设计表面上生长的 MoSe 2 纳米带的宽度控制合成。调节载气流中的 H 2 分压可以将纳米带宽度调整到 175 nm 到近 500 nm 之间。实验和模拟表明,H 2 暴露增加了 Si-P 二聚体上氢的表面覆盖率,而 Si-P 二聚体通常是纳米带成核和生长的有利区域。此外,MoSe 2 纳米带表现出异常光致发光蓝移,其幅度为 60 meV,与 MoS 2 纳米带的光发射光谱中报道的幅度相似。这些研究表明,最近开发的纳米带的基底定向生长策略可以扩展到硒化物系列 TMD。此外,它们扩展了制备复杂 TMD 异质结构的合成基础,而这种结构是光学和量子传感器、换能器和处理器所必需的。关键词:过渡金属二硫属化物、纳米带、MoSe 2 、表面、光致发光、激子■ 简介
隧道光谱已在2D材料的范围内广泛使用,以探索电子 - phonon耦合(自然物理学4,627,2008),以解决电子缺陷状态(Commun Phys 1,94,2018),并调查了共鸣式隧道(Nature Nanotech tunneling(Nature Nanotech 9,808,808,2014,2014,2014年)。此外,在半导体异质结构的传输测量中也观察到了激子(J. Appl。物理。81,6221,1997)。在所有这些研究中,相关状态都被电荷注入激发。另一方面,在我们的工作中,TMD坐在电路外,没有电荷载体注入TMD。
令人信服的Majorana零模式(MZM)的签名是基于拓扑超导性(TSC)实现易耐断层量子计算的必要要求。除了改进制造技术外,探索化学计量的TSC平台是抑制MZMS特征的琐碎内置模式影响的另一种途径。化学计量过渡金属二核苷(TMD)是有希望的,但是诱导磁性涡流范围内的磁性涡流范围受到MZMS的限制,受到小垂直上的临界临界率限制。在这里,我们提出,嵌入TMD的chalcogen空位(CVS)的线缺陷是用于实现稳定MZM的化学计量计量的TSC候选物,而无需在平面内磁场范围内范围内TSSS。对1H-MO X 2、1H-W X 2和1T-PT X 2(X = S,SE或TE)单层缺陷的详细分析和计算表明,通过非中性集体组对称性对奇数型旋转耦合效果,称为抗对称性旋转 - 铲耦合效果,称为奇数配对的起源。第一原理TSC相图的构建是为了促进对位于线缺陷两端的MZM的令人信服的签名的实验检测。我们的发现丰富了化学计量的TSC候选物,并将根据设备友好的TMD来促进设备制造以操纵和存储量子信息。
› 如果使用记录最低/最高温度的 DDL,每次打开便携式疫苗储存装置时,请检查并记录温度。 › 如果 TMD 仅测量当前温度,请将探头尽可能靠近疫苗,并每小时检查并记录温度。 – 尽可能保持容器关闭。