数字微镜装置改进 德州仪器改进了其先前宣布的数字微镜装置 (DMD),该装置旨在取代大屏幕投影电视接收器中的阴极射线管 (CRT) 和液晶光阀 (LCLV) 投影仪。最新的改进增加了每个装置上有效的镜面面积。DMD 每边的尺寸小于 5/e 英寸,由驱动器装置顶部形成的 400,000 多个可移动微型镜子阵列组成。驱动器本质上是一个 CMOS 静态只读存储器 (SRAM),包含逻辑、内存和控制电路。来自计算机的数字信号使镜子在基板芯片的控制下在两个触点之间来回翻转。DMD 反射照射在其上的光,并且镜子在任何给定时间的位置决定了可以投影的图像。DMD 与 LCLV 一样,被归类为空间光调制器或 SLM,因为其操作取决于其反射来自外部光源的光的能力。DMD 是通过采用标准 CMOS 制造技术制造基本驱动器芯片而制成的。然后将反射铝合金层沉积在该基板上并蚀刻掉,以形成 17 微米方形微镜阵列,这些微镜由允许所有微镜以 ± 10° 角度移动的结构支撑。每个镜子在两个对角相对的角上通过柔性扭力杆连接到支撑柱上。(见图1)支撑柱将每个镜子悬挂在驱动器表面上方约 2 微米处,提供电信号和静电力,使镜子从一个触点到另一个触点“摇摆”。
下文将从广义上讨论量子张量网络,它为我们提供了一种近似和高性能处理量子态的有效方法 [1–3]。由于实际量子计算机应具有大量量子比特,即 n ≥ 1000,基态数为 2 n > 10 300 。这意味着将用户(大)数据输入量子寄存器所需的基本幺正运算数量通常应为同一数量级。因此,只有对某些特殊类型的量子态,才能有效地将此类系统的状态密度矩阵分解为有限的收缩张量族(张量串)。另一方面,几何思想和几何工具,包括量子张量网络几何 [4],在量子计算和量子信息论中相当常见,尤其是在研究纠缠 [5, 6] 和引力的出现 [7] 方面。本篇短文概述了一种新的几何方法,该方法使用具有相对较少独立参数的量子张量网络来模拟量子态。该方法基于在正常坐标下的协变级数,该级数基于具有适当线性联络的 k(k≪n)四维流形的直积以及相应的曲率和/或挠率;我们只考虑 k = 1 的情况,但显然可以推广到任意 k > 1 的情况。给定一个联络(或一个(伪)黎曼度量),计算曲率和挠率的协变导数,然后计算量子态的系数作为秩为 n 的某个张量的分量。参考文献 [8–11] 中给出了级数系数的明确公式和计算方法。第 2 节包含一些必要的数学准备工作和泡利基中量子态的简要描述。在第 3 节中,我们将讨论该级数的协变级数。 3 量子比特量子系统的状态空间由四维流形建模;我们详细描述了具有零曲率和非零挠率的线性连接的情况的协变展开。第 4 节给出了为三量子比特的量子系统建模 Greenberger-Horne-Zeilinger (GHZ) 状态的说明性示例。
摘要。我们将通常的理想作用扩展到定向椭圆曲线上,以对定向(极化的)阿贝尔品种的(Hermitian)模块作用。面向的阿贝尔品种自然富含𝑅模型,而我们的模块作用来自富含封闭的对称单体类别的类别的规范功率对象构造。尤其是我们的作用是规范的,并提供了完全露出的对称单体作用。此外,我们给出算法以在实践中计算此操作,从而概括了等级1的常规算法。该动作使我们能够基于普通或定向的椭圆曲线,一方面基于同一框架,基于同一基础的密码学,另一方面是基于基于𝔽2定义的超强椭圆曲线的一个。特别是,从我们的角度来看,超高的椭圆曲线是由等级1模块的作用给出的,而在𝔽𝔽2上定义的曲线(Weil限制)由等级2模块作用给出。因此,等级2模块作用反转至少与超级同学路径问题一样困难。因此,我们建议将隐居模块用作密码对称单体动作框架的化身。这概括了更标准的加密组动作框架,并且仍然允许进行耐克(非交互式键换)。我们行动的主要优点是,大概,Kuperberg的算法不适用。与CSIDH相比,这允许更紧凑的密钥和更好的缩放属性。在实践中,我们提出了密钥交换方案⊗ -Mike(张量模块同基键交换)。爱丽丝和鲍勃从超高的椭圆曲线𝐸0 /𝔽𝔽开始,并在𝔽2上计算同一基础。他们每个人都会发送曲线的𝑗-至关重要的是,与Sidh不同,根本不需要扭转信息。由模块作用给出的它们的共同秘密是一个尺寸4主要是极化的阿贝利亚品种。我们获得了一个非常紧凑的Quantum Nike:仅适用于NIST 1级安全性的64B。
摘要:过去 50 年来,人们已经发现了目前已知的六种硝苯地平 (NIF) 多晶型物,其中最新发现的一种 (δ) 于 2020 年发现,其来自一条不寻常的途径。这种多晶型物在热力学稳定性方面排名第二,但之前的所有研究人员都未能发现,直到在其熔体中接种了一种外来物质非洛地平的晶体,而非洛地平的分子构象与当时已知的所有其他 NIF 多晶型物都不同。鉴于实验室中的这一不寻常发现,我们研究了晶体结构预测 (CSP) 是否可以在“常规”搜索中找到这种多晶型物和其他多晶型物。我们表明,我们的 CSP 可以发现目前已知的所有有序的 NIF 多晶型物均为低能结构(排名 1、3、4 和 43),包括最近通过伪种子发现的一种(排名 4)。 NIF 是一种柔性分子,因此了解其众多构象中的哪一种可作为晶体的最佳构建块是很有意义的。对这一问题的实验研究受生存限制;也就是说,我们仅掌握可观察到的结构的信息,而没有掌握难以观察到或尚未发现的结构的信息。在这方面,我们的“计算机实验”可以访问所有可能性。我们发现,就苯基扭转而言,同平面(sp )构象产生的能量晶体比反平面(ap )构象产生的能量低,最稳定的 ap 晶体的能量比最稳定的 sp 结构高 4 kJ/mol。实验上,sp 构象在溶液中优于 ap,并且是晶体中观察到的唯一构象。就酯扭转而言,顺式/反式构象产生的能量晶体最低,其次是顺式/顺式构象,最后是反式/反式构象。实验表明,六种已知多晶型物中有五种包含顺式/反式构象异构体,一种包含顺式/顺式构象异构体,没有一种包含反式/反式构象异构体。总体而言,尽管 NIF 的构象空间复杂,但 CSP 在预测其多晶型物方面非常成功,并且定量评估了使用不同构象异构体作为晶体构建单元的相对成本。■ 简介
我们研究了基于映射到大 n 极限下的 n 量子比特中心自旋模型 (CSM) 的非线性量子比特演化模型,其中平均场理论是精确的。扩展了 Erdös 和 Schlein 的定理 [ J. Stat. Phys. 134, 859 (2009) ],我们建立起当 n →∞ 时,CSM 与非线性量子比特严格对偶。对偶性支持在诸如凝聚态之类的系统中进行一种非线性量子计算,其中大量辅助粒子对称地耦合到中心量子比特。它还支持具有严格误差界限的非线性量子模拟的门模型实现。该模型的两种变体(有和没有辅助粒子耦合)映射到具有不同非线性和对称性的有效模型。在没有耦合的情况下,CSM 模拟初始条件非线性,其中哈密顿量是 tr( ρ 0 σ x ) σ x 、tr( ρ 0 σ y ) σ y 和 tr( ρ 0 σ z ) σ z 的线性组合,其中 σ x 、σ y 和 σ z 是泡利矩阵,ρ 0 是初始密度矩阵。通过对称辅助耦合,它模拟 tr( ρσ x ) σ x 、tr( ρσ y ) σ y 和 tr( ρσ z ) σ z 的线性组合,其中 ρ 是当前状态。这种情况可以模拟量子比特扭转,Abrams 和 Lloyd [ Phys. Rev. Lett. 81, 3992 (1998) ] 已证明这可以在理想设置中使状态鉴别的速度呈指数级加速。从量子基础的角度来看,这里讨论的对偶性也可能很有趣。长期以来,人们一直对量子力学是否可能具有某种类型的小的未观察到的非线性感兴趣。如果不是,那么禁止它的原理是什么?对偶性意味着根据线性和非线性量子力学演化的宇宙之间没有明显的区别:在大爆炸时以纯状态 | ϕ ⟩ 准备的单量子比特宇宙,与以相同状态准备的辅助粒子对称耦合,只要有指数级数量的辅助粒子 n ≫ exp[ O ( t )],似乎就会在任何有限时间 t > 0 内非线性演化。
应用程序。2。讨论车身工程和空气动力学的不同方面。3。分析各种类型的转向系统。4。讨论各种类型的制动和悬架系统。5。对汽车中的电气和仪器系统进行故障排除。6。建议提高车辆性能的高级技术。模块:1个底盘布局6小时车辆分类(2W,3W和4W) - 引擎位置和驱动器的底盘布局类型 - 汽车框架 - 材料选择和构造详细信息 - 各种类型 - 在框架上作用的不同负载 - 在框架上进行操作 - 自动框架测试 - 自动框架 - 车辆命名。模块:2辆车车身工程6小时的汽车风格 - 公共汽车和商用车 - 车身结构的不同部分(乘用车和商用车) - 车身设计工程工程(类型,建筑和设计方面) - 车身材料和装饰 - 制造和安全方面 - 身体建设的壁炉 - 身体建筑 - 绘画 - 绘画 - 抗腐蚀和表面处理。模块:3车辆空气动力学6小时外部和内部流动问题 - 汽车和轻型货车的性能 - 对车辆运动的抵抗 - 拖动及其类型 - 汽车周围的流动场 - 汽车的空气动力开发 - 汽车和商用车尸体的优化,以减轻拖动。模块:4转向系统6小时的前车轴和轴轴 - 前轮几何形状 - 车轮在转向过程中的真实滚动运动的条件 - 转向机构 - 转向误差曲线 - 转向误差 - 转向链接 - 转向齿轮的不同类型的转向齿轮 - 转向和转向和转向,转向,转向,不可逆的转向 - 不可逆转的转向 - 动力辅助 - 辅助踩踏 - 四分 - 四翼。模块:5悬架系统6小时的悬架系统 - 悬架弹簧的类型 - 单叶,多叶,多叶,线圈,扭转杆,橡胶,气动和水力的构造细节和特征 - 弹性悬架系统 - 独立的悬架系统,冲击吸收器,类型和构造详细信息。
单元1:工程数学线性代数:矩阵代数,线性方程系统,特征值,特征向量。Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Divergence theorem, Green's theorem.微分方程:一阶方程(线性和非线性),具有恒定系数的高阶线性微分方程,参数变化的方法,Cauchy方程,Euler方程,初始值和边界值问题,部分微分方程,部分微分方程,变量分离方法。复杂变量:分析函数,Cauchy的积分定理,Cauchy的积分公式,Taylor系列,Laurent系列,残基定理,解决方案积分。概率和统计:对定理,有条件的概率,平均值,中位数,模式,标准偏差,随机变量,离散和连续分布,Poisson分布,正态分布,二项式分布,相关分析,回归分析分析,回归分析分析:矩阵逆上的矩阵倒立,求解非元素平等的方法,差异和差异化方法,差异和差异化方法,差异和差异性方法差异化方法,差异差异和差异化方法差异化方法和差异方法。相关分析。单元2:应用力学和设计工程机制:自由图和平衡;摩擦及其应用,包括滚动摩擦,Belt-Pulley,刹车,离合器,螺丝千斤顶,楔子,车辆等。;桁架和框架;虚拟工作;平面运动中刚体的运动学和动力学;冲动和动量(线性和角度)以及能量配方;拉格朗日方程。材料力学:应力和应变,弹性常数,泊松比; Mohr的圆圈,用于平面应力和平面应变;薄缸; shear force and bending moment diagrams;弯曲和剪切应力;剪切中心的概念;梁的挠度;圆形轴的扭转;欧拉的
Components of Fatigue Test Controller Manjula B K EEE Department BMSIT&M Abstract: This paper describes about the development of computer controlled single channel controller used in servo hydraulic test system for fatigue testing of materials. The closed loop control obtained with load cell and LVDT which provides an electrical signal to the controller proportional to the mechanical position of the actuator or load exerted by it. The electrical signal is passed through signal conditioning circuitry for amplification of the signal which is fed to the servo-controller to generate an error signal. The feedback mode whether in stroke (LVDT) or Load mode is compared with respective set points using a differential amplifier. Add -on boards of digital to analog converter is used to convert the set-points which are in digital form to analog value. The operations of the controller are displayed on the console of the computer. Keywords: Fatigue test, Controller DAC,ADC, Load mode and stroke mode 1. Introduction Fatigue testing is critical requirement of aircraft to determine the life span of the aircraft. A fatigue test helps determine a material's ability to withstand cyclic fatigue loading conditions. By design, a material is selected to meet or exceed service loads that are anticipated in fatigue testing applications. Cyclic fatigue tests produce repeated loading and unloading in tension, compression, bending, torsion or combinations of these stresses. Fatigue tests are commonly loaded in tension – tension, compression – compression and tension into compression and reverse. To perform a fatigue test a sample is loaded into a fatigue tester or fatigue test machine and loaded using the pre- determined test stress, then unloaded to either zero load or an opposite load[1]. This cycle of loading and unloading is then repeated until the end of the test is reached. The test may be run to a pre-determined number of cycles or until the sample has failed depending on the parameters of the test[2]. The purpose of a fatigue test usually is to determine the lifespan that may be expected from a material subjected to cyclic loading, however fatigue strength and crack resistance are commonly sought values as well. The fatigue life of a material is the total number of cycles that a material can be subjected to under a single loading scheme. A fatigue test is also used for the determination of the maximum load that a sample can withstand for a specified number of cycles. All of these characteristics are extremely important in any industry where a material is subject to fluctuating instead of constant forces. Types of fatigue tests: There are several common types of fatigue testing as well as two common forms: load controlled high cycle and strain controlled low cycle fatigue. A high cycle test tends to be associated with loads in the elastic regime and low cycle fatigue tests generally involve plastic deformations. Types of materials for fatigue tests Most of the materials may experience fatigue in one way or another during the lifespan of their application. However, in applications where fatigue is a factor it is common to find components made from metals or composites. These materials have a higher fatigue limit than others because of
M.Tech. 课程内容 AS 3010 航空航天技术概论 3003 航天任务类型、环境、天体动力学:轨道力学基础(双体运动、圆周速度和逃逸速度、椭圆双曲和抛物线轨道运动);基本轨道机动。 火箭推进基础:上升飞行力学:运载火箭选择。进入大气层;进入飞行力学;进入加热。姿态确定和控制;基本概念;旋转动力学回顾;刚体动力学;扰动扭矩;被动姿态控制;主动控制;姿态确定。热控制、航天器功率、电信。 AS 5010 工程空气动力学与飞行力学 3003 流体力学基本方程。无粘流。流函数。速度势。二维不可压缩流:拉普拉斯方程及其解。翼型流;保角变换,薄翼型理论。有限机翼简介;普朗特升力线理论。边界层和分离对翼面流动的影响。大气。飞机基本性能评估。稳定性和控制简介。 AS 5020 气体动力学和推进要素 3003 气体动力学基本方程。一维等熵流。马赫波,冲击波。带有冲击、传热和摩擦的一维流动。二维冲击。普朗特-迈耶流。线性化二维亚音速流;普朗特-格劳特/戈特特变换。线性化超音速流;阿克雷特理论。吸气式和火箭推进系统的分类及其工作原理。螺旋桨理论,不同类型发动机的性能。高度和前进速度的影响。燃气涡轮发动机部件、构造和性能。 AS 5030 飞机和航空航天结构 3003 飞机分类、飞行原理、飞行控制、基本仪器和飞机系统、直升机机翼分析。剪切中心。封闭和开放管的弯曲和扭转。多室管。柱和梁柱。板和板桁组合的弯曲和屈曲。机身分析。实验技术;应变计、光弹性、离散和连续系统的振动。
对更高的结构和工程奇迹的需求需要具有出色强度的材料。纤维增强聚合物(FRP)材料被广泛用作外部增强剂,以增强混凝土成员的结构性能。然而,对经受扭转的加强成员的研究直到最近才引起了很大的关注。在易于地震的地区,了解扭转故障对于确保结构安全至关重要。frp(纤维增强聚合物)复合材料广泛用于加强和修复混凝土结构,因为它们的高强度重量比,耐腐蚀性,易于施用和耐用性。它们通常用作外部粘合钢筋,以提高结构构件的弯曲,剪切和轴向能力。几乎所有工程结构,包括房屋,工厂,发电厂和桥梁,在整个过程中都会经历退化或恶化。环境因素,例如钢的腐蚀,随着年龄的增长,温度变化的逐渐损失,冻融周期,重复的高强度负荷,与化学物质和盐水接触以及暴露于紫外线辐射是这些恶化的主要原因。除了这些环境因素外,任何建筑退化的重要因素是地震。需要创建有效的结构改造技术来解决此问题。因此,关注土木工程基础设施的性能至关重要。有两种解决结构改造问题的解决方案:修复/改造或拆除/重建。如果升级是一种实用的替代方案,则旧设施的总替换可能不是一个经济有效的选择,而是可能成为日益增长的财务负担。由于降解,衰老,缺乏维护,强烈的地震以及当前设计标准的变化,桥梁,建筑物和其他土木工程结构的损害造成的损害。以前,通过使用新材料卸下和更换质量或损坏的混凝土或//和钢加固,从而完成了钢筋混凝土结构(例如柱,梁和其他结构元素)的改造。然而,随着新的高级复合材料(例如纤维增强聚合物(FRP)复合材料),现在可以使用外部粘结的FRP复合材料轻松有效地加强混凝土成员