免疫检查点抑制剂已经彻底改变了癌症治疗,但是许多患者不能从治疗中获得任何好处,或者对检查点抑制剂产生抗药性。内在电阻可能是由于新抗原耗竭,有缺陷的抗原表现,PD-L1下调,免疫检查点配体上调,免疫抑制和肿瘤细胞表型变化。另一方面,自变量的外部电阻获得了抑制性免疫检查点的上调,导致T细胞耗尽。当前数据表明PD-1,CTLA-4和LAG-3上调限制了单药免疫检查点在Hibitor中的功效。正在进行的临床试验正在研究新的免疫检查靶标,以避免或克服问题。本综述提供了对癌症潜在靶向免疫检查点不断发展的景观的深入分析。我们强调了它们的生物学,强调了当前对抗药性机械性抗药性的理解,并专注于正在研究的有前途的策略。我们还总结了这个关键领域的当前结果和正在进行的临床试验,这可能再次彻底改变癌症患者的结果。
结论•在Caris队列中,在乳腺癌(263例),子宫癌(90例)和卵巢癌(87例)中检测到复发性ESR1融合。•与ERα相比,ESR1融合物是独立的,多动并且在生理上稳定的,具有更大的半寿命,并且可能足以足以具有内分泌Tx耐药性。•与没有ESR1变异的患者相比,ESR1融合阳性队列的ESR1的表达和拷贝数明显更高。这在包括乳腺癌,卵巢癌和子宫癌在内的所有适应症中都是一致的•与对照组相比,所有适应症的ESR1融合患者的预后都明显差。•ESR1融合在RET,IGF1R和FGFR3的上调观察到乳腺癌中的致癌激酶信号传导上调。•在ESR1融合病例中未观察到卵巢和子宫内膜癌的肿瘤信号传导的类似上调,这可能是由于缺乏TP53-FoxA1-轴。•靶向致癌激酶信号传导可能是ESR1融合阳性乳腺癌的一种有希望的方法。参考
图 1:MCL-1 抑制剂诱导的 MCL-1 蛋白上调、稳定性和诱导细胞凋亡的机制。已证实使用 MCL-1 抑制剂治疗后,MCL-1 蛋白有三种主要上调途径 (A – C)。 (A) MCL-1 蛋白稳定性在一定程度上是在与 MCL-1 抑制剂结合后得到促进的,导致蛋白质构象变化,从而通过上游 MEK/ERK 信号通路增强 MCL-1 Thr163 磷酸化。 (B) MCL-1 抑制剂治疗增强了 DUB 活性并诱导 Noxa 与 MCL-1 解离,随后 Noxa 快速降解,通过增强 USP9x:MCL-1 相互作用实现 MCL-1 稳定性。此外,MCL-1 抑制剂降低了 E3 连接酶 Mule 的水平,导致 MCL-1 泛素化缺陷。净效应表现为 MCL-1 蛋白稳定性增加。 (C) MCL-1 抑制剂与 MCL-1 蛋白结合,诱导 MCL-1 与 BAX/BAK 促凋亡蛋白复合物分离,促进其寡聚化,从而诱导细胞凋亡。黑色箭头表示增强作用,红色箭头表示抑制作用。X 标记表示正常通路中断。
等离子体,单核细胞,中性粒细胞或血小板的增殖增加(1、3、4)。大约30%的被诊断为MD的患者最终患有急性髓样白血病(AML)(5)。eVI1首先被鉴定为具有逆转录病毒诱导的髓样恶质的小鼠中生态病毒整合的常见位点(6)。人类EVI1(MECOM)基因位于Chro-Mosome 3Q26上,EVI1的多种同工型在MECOM基因座(7)中编码。3q26染色体的重排,导致EVI1的上调,经常发生在包括MDS,AML和慢性髓样白血病(CML)在内的髓样恶性疾病中(8-10)。MDS,AML和CML具有INV(3)/T(3; 3)重排通常具有相似的病理特征,预后不良(8、11、12)。It was reported that chromosome rear- rangements cause overexpression of EVI1 due to relocation of enhancers, including GATA binding protein 2 (GATA2) enhancer in inv(3)/t(3;3) (q21q26) (13, 14) and MYC super-enhancer in t(3;8) (q26;q24) close to the EVI1 gene (15).EVI1过表达可能发生在没有3染色体重排的MDS患者中。EVI1上调
质膜损伤(PMD)在所有细胞类型中都由于环境扰动和细胞自主活性而发生。但是,除了恢复或死亡,PMD的细胞结局在很大程度上仍然未知。在这项研究中,使用萌芽的酵母和正常的人成纤维细胞,我们发现细胞衰老(稳定的细胞周期停滞导致有机衰老)是PMD的长期结果。我们使用芽酵母的遗传筛查意外地确定了PMD反应与复制寿命法规之间的紧密遗传关联。此外,PMD限制了萌芽酵母中的复制寿命;膜修复因子的上调ESCRT-III(SNF7)和AAA-ATPase(VPS4)扩展了它。在正常的人成纤维细胞中,PMD通过Ca 2+ –p53轴诱导过早衰老,但不是主要的衰老途径,DNA损伤响应途径。ESCRT-III(CHMP4B)的瞬时上调抑制了PMD依赖性衰老。 与mRNA测序结果一起,我们的研究强调了一种未充分考虑但无处不在的衰老细胞亚型:PMD依赖性衰老细胞。ESCRT-III(CHMP4B)的瞬时上调抑制了PMD依赖性衰老。与mRNA测序结果一起,我们的研究强调了一种未充分考虑但无处不在的衰老细胞亚型:PMD依赖性衰老细胞。
抽象的目的是破译主要的人乳寡糖(HMO),2'-五甲基乳酸(2'FL)的机制,可以影响小鼠喂养高脂饮食(HFD)喂养的体重和脂肪质量增加。我们想阐明2'FL代谢作用是否与肠粘膜产生和分泌,粘蛋白糖基化和降解以及肠道微生物群,粪蛋白蛋白质组和内源于内源于内球蛋白(ECB)系统的调节有关。结果2'fl补充可降低HFD诱导的肥胖症和葡萄糖不耐症。这些作用伴随着肠道粘液层的几种变化,包括粘液产生和成分,以及分泌和跨膜粘蛋白,糖基转移酶以及涉及粘液分泌的基因的基因表达。此外,2'fl增加了参与粘蛋白糖降解的细菌糖基水解酶。These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides , different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system.我们还研究了瘦和肥胖人类的粪便蛋白质组织,发现比较瘦小小鼠的类似变化。结论我们的结果表明,HMO 2'FL通过调节粘液层,肠道微生物群和欧洲央行系统来影响宿主代谢,并提出粘液层作为预防肥胖和相关疾病的新潜在靶标。
乳腺癌是全球面临的重大健康挑战,需要不断探索新的治疗方法。细辛酮是一种来自菖蒲属的生物活性化合物,具有良好的抗癌特性,但其对乳腺癌细胞的影响尚未得到充分研究。本研究使用体外和计算机模拟方法研究了细辛酮对乳腺癌细胞系的抗癌潜力。使用 DPPH 自由基清除试验评估了细辛酮的抗氧化活性,结果显示其对自由基具有剂量依赖性(25.56%、32.18%、47.73%、54.83% 和 66.74%)。MTT 试验显示细胞活力呈剂量依赖性下降,表明细辛酮对乳腺癌细胞具有细胞毒性。 mRNA 表达分析表明,针对凋亡调节因子,例如 Bax(1、1.3、1.52 倍变化上调)和 Bad(1、1.4 和 1.6 倍变化上调)基因表达,表明细辛醚通过内在途径诱导细胞凋亡。此外,细辛醚抑制 Akt mNRA(1、0.6 和 0.4 倍变化下调)、caspase-3(1、1.4 和 1.7 倍变化上调)和细胞色素 c mRNA(1、1.2 和 1,54 倍变化上调),表明干扰关键的癌症进展途径。分子对接研究预测细辛醚与参与细胞凋亡和细胞存活的关键蛋白质(包括 Bax、Bad、细胞色素 c、caspase 3 和 Akt)之间存在有利的结合相互作用。这些发现共同强调了细辛醚对乳腺癌细胞的多方面抗癌机制。这项研究强调了阿魏酸作为乳腺癌天然治疗剂的潜力,为进一步探索转化研究和临床试验提供了途径。本研究大大提高了我们对阿魏酸抗癌特性的认识,为开发新的有效乳腺癌疗法提供了有希望的方向。
大量证据表明,低氧驱动恶性细胞的侵略性分子特征,而与癌症类型无关。非霍奇金淋巴瘤(NHL)是最常见的血液系统恶性肿瘤,其特征是频繁涉及多样的低氧微环境。我们研究了长期深缺氧(1%O2)对淋巴瘤细胞生物学的影响。在缺氧下≥4周,有6种测试的细胞系(RAMOS和HBL2)中只有2个。缺氧适应的(HA)B RAMOS和HBL2细胞的增殖速率降低,伴随着对氧化磷酸化和糖酵解途径的显着抑制。转录组和蛋白质组分析表明,线粒体呼吸复合物I和IV的基因和蛋白质的下调明显下调,以及线粒体核糖体蛋白。尽管观察到了糖酵解的抑制抑制,但对两个HA细胞系的蛋白质组分析表明,与葡萄糖利用的调节有关的几种蛋白质的上调,包括丙酰-4-羟化酶P4HA1的活性催化成分,这是一种重要的可药物果仁。ha细胞系显示自动/线粒体的关键调节剂的转录增加,例如神经蛋白,Bcl2相互作用蛋白3(BNIP3),BNIP3样蛋白和BNIP3 pseudogene。对缺氧的适应性进一步与凋亡失调,即Bcl2l1/bcl-XL的上调,BCl2L11/BIM的过表达,BIM与Bcl-XL的结合增加,显着提高了对A11555463的细胞对A1155463的细胞敏感性的敏感性。负责葡萄糖利用的蛋白质的上调,2。最后,在两个HA细胞系中,Akt激酶均经过过度磷酸化,并且细胞对Copanlisib的敏感性增加,这是PAN-PI3K抑制剂。总而言之,我们的数据报告有关淋巴瘤细胞适应长期缺氧的几种共享机制,包括:1。线粒体蛋白降解潜在的线粒体回收(通过线粒体)和3。增加对BCL-XL和PI3K-AKT信号的依赖性。在翻译中,抑制糖酵解,BCL-XL或PI3K-AKT级联反应可能导致靶向消除HA淋巴瘤细胞。
幼稚 CD4 + T 淋巴细胞最初经历抗原特异性激活以促进广谱反应,然后采用由细胞间微环境线索形成的定制细胞因子表达谱,从而导致以病原体为中心的模块化细胞因子反应。白细胞介素 (IL)-4 诱导的 Gata3 上调对于与抗蠕虫免疫和错误引导的过敏性炎症相关的 T 辅助细胞 2 (TH 2) 极化很重要。其他微环境因素是否参与其中尚不清楚。使用全小鼠基因组 CRISPR-Cas9 筛选,我们发现了 α v β 3 整合素在 TH 2 细胞分化中以前未被重视的作用。幼稚 CD4 + T 细胞的低水平 α v β 3 表达通过促进 TT 细胞聚集和 IL-2/CD25/STAT5 信号传导促进了泛 T 细胞活化。随后,IL-4/Gata3 诱导的 α v β 3 选择性上调允许 TH 2 细胞间 α v β 3-Thy1 相互作用,增强 mTOR 信号传导,支持分化并促进 IL-5/IL-13 产生。在小鼠中,α v β 3 是有效的过敏原驱动的抗原特异性肺 TH 2 细胞反应所必需的。因此,表达 α v β 3 的 TH 2 细胞形成多细胞工厂来传播和扩增 TH 2 反应。
严重的共同感染后的抽象目的,一定比例的个体出现了长时间的症状。我们调查了急性Covid-19的症状持续性几个月的持续性的免疫功能障碍。方法我们分析了细胞因子,细胞表型,SARS-COV-2峰值特异性和中和抗体以及住院后1、3和6个月患者的全血液基因表达谱。结果我们观察到持续异常,直到第6个月为标志,以(i)高血清单核细胞/巨噬细胞和内皮激活标记,趋化性和造血细胞因子的高度水平; (ii)中央记忆CD4 +和效应子CD8 + T细胞的高频; (iii)抗SARS-COV-2尖峰和中和抗体的降低; (iv)与血小板,中性粒细胞激活,红细胞,髓样细胞分化和Runx1信号有关的基因的上调。我们确定了与血栓性事件史相关的“核心基因特征”,并上调了一组参与中性粒细胞激活,血小板,造血和血液凝结的基因。结论在随访6个月后,即使在经历了严重的Covid-19的Asymp-Tomatic患者中,基因表达缺乏恢复到正常特征,这表明需要仔细扩展其临床随访并提出预防措施。