摘要 — 大型语言模型等生成式人工智能工作负载的计算需求每年增长 1000%,而摩尔定律的扩展每年仅提供 3% 的晶体管/平方毫米。为了缩小这些巨大的需求和供应指数之间的差距,行业不仅需要更好的芯片间互连,还需要将更多硅片集成到单个封装中的方法。本文将重点介绍 Groq 语言处理单元 (LPU TM ) 推理引擎的先进封装建模,这是迄今为止性能最高的大型语言模型推理引擎。更具体地说,本文将重点介绍准确的翘曲预测,这已成为对设计可靠性和可制造性具有深远影响的关键挑战。
本作品根据 Creative Commons Attribution 4.0 许可证授权。本文由 Technical Disclosure Commons 免费提供给您,供您开放访问。Technical Disclosure Commons 的授权管理员已接受将其纳入防御性出版物系列。
§ 全帧测量技术,几秒钟内即可测量表面形貌 § 高点密度,每次采集 500 万个 3D 点 § 可扩展,标准测量范围从 10x12x3 [mm] 到 400x500x50 [mm],并可定制 得益于独特的设计,多尺度分析允许在一个热曲线中使用不同的放大倍数对同一物体进行多次采集。因此,可以研究不同尺度对变形的影响 [2] — 例如,同时研究 WLP 级和中心/外围芯片。因此,TDM 技术已被确定为一种适合执行 PLP 翘曲测量的工具:在室温下,在热曲线期间,研究重力效应。
Wafer Warpage是半导体制造商面临的基线问题,实际上,在与制造功率金属氧化物半导体磁场效应晶体管(MOSFET)的制造的人中尤为明显。这是因为垂直MOSFET与传统的外侧对应物相比会经历更大的经线效应。wafers超过其临界价值的瓦金(Wafers)在自动处理过程中无法通过吸尘器吸附来削减其临界价值;晶圆上制造的设备也面临可靠性问题。本文介绍了用于减少电源MOSFET晶体经纪的各种机制的分析。通过改变背面金属化(BSM)厚度,膜沉积的溅射功率和晶片温度(即将低温条件引入过程中)来检查扭曲行为。结果表明,当前端制造过程完成后,BSM厚度和晶圆的温度都与晶圆经膜的相关性明显相关。晶圆弓水平与溅射功率的大小直接成比例。当溅射功率降低时,诱发残留应力较小以变形晶片结构。因此,可以调整溅射功率,以确保扭曲效应保持在其临界值以下。关键字:经形,功率MOSFET,残余压力,背面金属化,溅射功率,低温温度
摘要 客户对小型电子设备的需求推动了组装过程中使用更薄的电子元件和更薄的印刷电路板 (PCB)。更薄的元件和更薄的多面板 PCB(≤ 1 毫米)的使用导致表面贴装 (SMT) 组装过程中出现 PCB 翘曲问题,进而影响 PCB 组装产量。翘曲过度的 PCB 会影响印刷过程中的焊膏印刷质量,并影响回流焊接过程中焊点的形成,从而导致 SMT 组装缺陷。回流温度下 PCB 翘曲缺乏行业标准,进一步加剧了 PCB 翘曲对 SMT 组装产量的风险。本文将使用高温翘曲测量技术,通过改变 PCB 后处理(烘烤与无烘烤)、面板位置(角落与中心)、PCB 厚度(0.8 毫米与 0.6 毫米)、材料(中 T g 与高 T g)和加工(即在条件 A 与 B 下的层压),评估 PCB 制造、设计和材料对球栅阵列 (BGA) 和面板区域 PCB 翘曲的影响。
Intelligent power modules (IPMs) are widely used in the electric vehicle (and hybrid electric vehicle industry nowadays due to their high power densityandabilitytointegratemultiplecomponentswithinasinglepackage.However,thereliabilityofIPMsisseverelydegradedbythesubstrate warpage effect produced during the packaging process.因此,本研究开发了一个计算模型,以分析包装过程的各个阶段IPM组装的经线。通过比较直接镀铜底物的经线的数值结果与实验观察结果来确认模拟模型的有效性。Taguchi experiments are then performed to examine the effects of eight control factors on the IPM package warpage following the post-mold cure (PMC) process, namely (1) the dam bar layout, (2) the epoxy molding compound (EMC) thickness, (3) the lead frame thickness, (4) the ceramic thickness, (5) the bottom layer Cu foil thickness, (6) the top layer Cu foil thickness, (7)陶瓷材料类型和(8)EMC材料类型。最后,Taguchi分析结果用于确定最大程度地减少POST-PMC软件包的经线的最佳包装设计。
* 通讯作者:nima.gorji@tudublin.ie 摘要 — X 射线衍射 (XRD) 映射是一种非破坏性计量技术,可以重建通过热机械应力在硅晶片上引起的翘曲。在这里,我们使用一种基于在 x 和 y 方向以及对同一样品进行不同 90 度旋转的一系列线扫描的方法来映射晶片的翘曲。这些线扫描从晶片表面收集摇摆曲线,记录由于表面取向错误而偏离布拉格角的衍射角 (ω)。表面翘曲通过引起测量的衍射角和参考布拉格角 (ω − ω0) 之间的差异和摇摆曲线增宽 (FWHM) 反映在 XRD 测量中。通过收集和整合整个表面和晶圆多次旋转的摇摆曲线 (RC) 和 FWHM 加宽,我们可以生成表面函数 f(x) 和角度错位 (翘曲) 的 3D 图。翘曲呈现凸形,与文献中报道的光学轮廓测量一致。基于实验室的 XRDI 有可能在更短的时间内原位绘制晶圆的翘曲图,就像在同步辐射源中完美执行一样。关键词:计量学、硅、翘曲、X 射线衍射、晶圆。I.介绍
*通讯作者:nima.gorji@tudublin.ie摘要 - X射线衍射(XRD)映射是一种非破坏性计量技术,可以通过热机械应力重建在硅晶片上引起的经线的重建。在这里,我们使用基于X和Y方向的一系列线扫描以及同一样品的不同90度旋转的方法绘制了晶圆的扭曲。这些线扫描从晶圆的表面收集摇摆曲线,记录由于表面不良导致的衍射角(ω)偏离了布拉格角。表面经线通过诱导测得的衍射角与参考角度角度(ω -ω0)和摇摆曲线扩展(FWHM)之间的差异来反映XRD测量。通过收集和整合摇摆曲线(RCS)和FWHM从整个表面和晶圆的多个旋转范围扩大,我们可以生成表面函数f(x)的3D地图和角度的不良方向(Warpage)。经线表现出凸形,与文献中报道的光学验证测量值对齐。基于实验室的XRDI有可能在较短的时间内和原位绘制晶圆的翘曲,这可以在同步加速器辐射源中完美地执行。关键字:计量学,硅,扭曲,X射线衍射,晶圆。I.简介
LeadFrame软件包。抽象的带状经线是模制的LeadFrame软件包中的一个常见问题。当经形过多时,无法处理条带,因为它会导致加载过程中的条带卡住或损坏,以处理机器装载机。有许多因素影响模制的铅框带的翘曲。这项研究重点介绍了模具盖厚度对模制Quad Flat No Lead(QFN)封装的脱带经穿的影响。使用有限元分析(FEA)在建模中考虑了不同的模具厚度值。结果表明,有最佳的霉菌厚度可产生最低的条带经形。在霉菌厚度低于最佳值时,翘曲处于皱眉模式,并且随着包装变薄而增加。最佳值也取决于铅框的厚度。最佳的霉菌盖厚度较低,用于较薄的铅框架。这项研究表明,霉菌盖的厚度对模制条纹具有重大影响。关键字:带状扭曲; LeadFrame Strip;霉菌厚度;模制包装;经线建模。1。引言半导体套件通常以条纹格式模制,然后将其唱歌到单个单元中。但是,由于在环氧成型化合物,Leadframe和Silicon Die的每个包装材料的热膨胀系数(CTE)中不匹配,因此脱带经态发生。包装组装制造过程中不同材料的膨胀速率的差异导致经扭曲。脱衣轮经过过多的问题,并且脱衣处理将很困难。图1显示了一个模制的铅框带包装,该套件具有过多的条带经形。
在过去的几十年里,人们投入了大量的时间和精力来提高环氧模塑料 (EMC) 封装的半导体封装翘曲的可预测性。借助先进的计算力学技术和计算硬件,人们可以模拟几乎任何类型的封装。数值预测所需的热机械性能,包括热膨胀系数 (CTE)、玻璃化转变温度 (T g ) 以及随温度和时间变化的粘弹性能,通常通过热机械分析仪 (TMA) 和动态机械分析仪 (DMA) 等商用工具进行测量。此外,可以使用基于阴影莫尔条纹和数字图像相关 (DIC) 的商用工具轻松测量随温度变化的翘曲。尽管付出了巨大的努力,但准确的预测仍然是一项艰巨的任务。EMC 通常占据封装体积的很大一部分,因此在封装翘曲行为中起着重要作用。这篇评论文章研究了关键的 EMC 属性对翘曲行为的影响。基于文献中报告的数据和分析,本文讨论了导致预测仍然困难的三个潜在原因,并讨论了应采取哪些措施才能将预测能力达到所需水平。