摘要:嵌合抗原受体(CAR)T细胞在临床上产生了巨大影响,但是通过汽车的有效信号传导可能不利于治疗的安全性和功效。使用蛋白质降解来控制CAR信号传导可以在临床前模型中解决这些问题。现有的调节汽车稳定性策略依赖于小分子来诱导全身性降解。与小分子调节相反,遗传回路提供了一种更精确的方法来以自动细胞的方式控制汽车信号。在这里,我们描述了一种可编程的蛋白质降解工具,该工具采用了生物蛋白蛋白的框架,由构成型域的靶标识别域组成的异源蛋白,该蛋白与构建域的靶标识别结构域组成,该结构域募集了内源性泛素蛋白酶体系统。我们开发了利用紧凑的四重残留脱基龙的新型生物oprotacs,并使用纳米病毒或合成亮氨酸Zipper作为蛋白质粘合剂来证明胞质和膜蛋白靶标的降解。我们的生物蛋白酶表现出有效的汽车降解,并且可以抑制原代人T细胞中的CAR信号传导。我们通过构建遗传回路来降解酪氨酸激酶ZAP70来证明我们的生物oprot素的实用性,以响应特定膜结合的抗原的识别。该电路只能在特定细胞种群的情况下破坏CAR T细胞信号。这些结果表明,生物oprotacs是扩展CAR T Cell Engineering工具箱的强大工具。关键字:靶向蛋白质降解,CAR T细胞,哺乳动物合成生物学■简介
葡萄是全球公认的具有重要经济价值的果树。在葡萄品种中,汤普森无核葡萄对鲜食和酿酒、干燥和榨汁的广泛应用具有至关重要的影响。该品种是葡萄基因改造最有效的基因型之一。然而,缺乏高质量的基因组阻碍了有效的育种工作。在这里,我们展示了汤普森无核葡萄的高质量参考基因组,其中所有 19 条染色体都表示为 19 个连续序列(N50 = 27.1 Mb),没有间隙,并且预测了所有端粒和着丝粒。与之前的组装(TSv1 版本)相比,新组装包含额外的 31.5 Mb 高质量测序数据,注释了总共 30 397 个蛋白质编码基因。我们还进行了细致的分析,以确定汤普森无核葡萄和两种以抗病性而闻名的野生葡萄品种中的核苷酸结合亮氨酸富集重复基因 (NLR)。我们的分析表明,汤普森无核葡萄中两种类型的 NLR(TIR-NB-LRR (TNL) 和 CC-NB-LRR (CNL))的数量显著减少,这可能导致其对许多真菌疾病(如白粉病)敏感,而第三种类型的 NLR(RPW8(抗白粉病 8)-NB-LRR (RNL))的数量增加。随后,转录组分析表明,在白粉病感染期间 NLR 显著富集,强调了这些元素在葡萄树防御白粉病中的关键作用。高质量汤普森无籽参考基因组的成功组装对葡萄基因组学研究做出了重要贡献,深入了解了无籽、抗病性和颜色性状的重要性,这些数据可用于促进葡萄分子育种工作。
土壤胞外酶活性(EEA)化学计量学反映了微生物对资源的代谢需求和养分有效性之间的动态平衡。然而,在贫营养环境下的干旱荒漠地区,代谢限制的变化及其驱动因素仍不清楚。在本研究中,我们调查了中国西部不同沙漠类型的样本,并测量了两种碳获取酶(β-1,4-葡萄糖苷酶和β-D-纤维二糖水解酶)、两种氮获取酶(β-1,4-N-乙酰氨基葡萄糖苷酶和L-亮氨酸氨基肽酶)和一种有机磷获取酶(碱性磷酸酶)的活性,以量化和比较土壤微生物基于其EEA化学计量学的代谢限制。所有沙漠的对数转换后的 C、N 和 P 获取酶活性比率为 1:1.1:0.9,接近假设的全球平均 EEA 化学计量比(1:1:1)。我们使用比例 EEA 通过矢量分析量化了微生物营养限制,发现微生物代谢受到土壤 C 和 N 的共同限制。对于不同类型的沙漠,微生物 N 限制按以下顺序增加:砾石沙漠 < 沙沙漠 < 泥沙漠 < 盐沙漠。总体而言,研究区域的气候对微生物限制变化的解释比例最大(17.9 %),其次是土壤非生物因素(6.6 %)和生物因素(5.1 %)。我们的研究结果证实,EEA 化学计量学方法可用于多种沙漠类型的微生物资源生态学研究,并且即使在沙漠等极度贫营养环境中,土壤微生物也能通过调节酶的产生来增加对稀缺营养物质的吸收,从而维持群落水平的营养元素稳态。
* 通讯作者电子邮箱:walink@iib.uam.es (WL);romano.silvestri@uniroma1.it (RS)。本文发表于《药物耐药性更新》(Elsevier,2021 年),第 100788 页。DOI:10.1016/j.drup.2021.100788 此版本为作者版本。摘要许多癌症患者经常对抗癌治疗没有反应,因为治疗耐药性是治愈癌症治疗的主要障碍。因此,确定耐药性的分子机制具有至关重要的临床和经济意义。基于对癌症的分子理解的靶向疗法的出现可以作为克服耐药性策略的模型。因此,鉴定和验证与耐药机制密切相关的蛋白质代表了一条通往创新治疗策略的道路,以改善癌症患者的临床结果。在这篇综述中,我们讨论了新兴靶点、小分子疗法和药物输送策略,以克服治疗耐药性。我们专注于基于转录因子、假激酶、核输出受体和免疫原性细胞死亡策略的合理治疗策略。从历史上看,未配体的转录因子和假激酶被认为是不可药用的,而通过抑制核输出受体 CRM1 来阻断核输出则被认为具有高度毒性。最近成功抑制 Gli HIF-1α、HIF-2α 并重新激活肿瘤抑制转录因子 p53 和 FOXO 说明了这种靶向方法的可行性和强大性。同样,在调节与治疗耐药性有关的假激酶蛋白(包括 Tribbles 蛋白家族成员)的活性方面也取得了进展。另一方面,Selinexor 是一种 CRM-1 的特异性抑制剂,CRM-1 是一种介导富含亮氨酸的核输出信号货物运输的蛋白质,已知是药物耐药性的驱动因素,它代表了抑制核输出作为克服治疗耐药性的可行策略的概念验证。
核苷酸结合结构域 - 富含亮氨酸的重复型免疫受体(NLR)通过效应蛋白的细胞内检测来保护植物免受致病性微生物的影响。然而,这是有代价的,因为NLR还可以在与外国等位基因的遗传相互作用中引起有害的自身免疫性。当将独立进化的基因组组合在杂质内或杂交中时,或者是通过诱变或转基因引入外来围栏时,可能会发生这种情况。大多数自身免疫性诱导的NLR都在高度可变的NLR基因簇中编码,没有已知的免疫功能,这些功能被称为自身免疫性风险基因座。NLR是否与在自然病原体抗性中运行的传感器NLR以及在自身免疫性中激活NLR的风险NLR是否有所不同。在这里,我们分析了拟南芥中主要的自身免疫热点的危险混合风险基因座。通过基因编辑和异源表达,我们表明,在三种独立的自身免疫性病例中,单个基因DM2H是自身免疫性诱导的必要且有足够的因素,可用于登录Landsberg Erecta。我们关注的是由EDS1-叶叶溶液蛋白(YFP)NLS融合蛋白引起的自身免疫性,以功能表征DM2H并确定激活免疫受体的EDS1- YFP NLS的特征。我们的数据表明,在这种情况下,在这种情况下,eDS1-YFP NLS的自身免疫性诱导性能的风险NLR的功能与传感器NLR的功能无关,与蛋白质作为免疫调节剂的功能无关。我们建议至少在某些情况下,自身免疫性可能是由外国等位基因与偶然匹配风险NLR的虚假,随机相互作用引起的。
帕金森病 (PD) 是一种无法治愈的进行性神经退行性疾病。临床表现以姿势不稳、静止性震颤和步态问题为特征,这是由于黑质致密部 A9 多巴胺能神经元逐渐丧失所致。创伤性脑损伤 (TBI) 被认为是几种神经退行性疾病的风险因素,但最有力的证据与 PD 的发展有关。轻度 TBI (mTBI) 是最常见的,其定义为意识丧失(如果有的话)极小,并且没有显著的可观察到的脑组织损伤。mTBI 导致美国退伍军人患 PD 的风险增加 56%,并且风险随着损伤的严重程度而增加。虽然越来越多的人体研究证据表明 TBI 与 PD 之间存在联系,但关于 TBI 是否会在弱势群体中促成 PD 病理或加速 PD 病理的基本问题仍未得到解答。几项有希望的研究指出,炎症、代谢失调和蛋白质积累是 TBI 启动或加速 PD 的潜在机制。淀粉样蛋白前体 (APP)、α-突触核蛋白 (α-syn)、高磷酸化 Tau 和 TAR DNA 结合蛋白 43 (TDP-43) 是 TBI 后上调的一些最常见蛋白质,也与 PD 密切相关。最近,在 TBI 后的小鼠脑中发现亮氨酸富集重复激酶 2 (LRRK2) 上调。Rab 蛋白的子集被确定为 LRRK2 的生物底物,LRRK2 也与晚发型 PD 密切相关。在 PD 和 TBI 模型中发现抑制 LRRK2 具有神经保护作用。本综述的目的是调查有关 TBI 和 PD 之间机制重叠的当前文献,特别关注炎症、代谢失调和上述蛋白质。本综述还将涵盖啮齿动物 TBI 模型的应用,以进一步加深我们对 TBI 和 PD 之间关系的了解。
摘要 mTORC1 蛋白激酶响应各种输入(包括氨基酸)调节细胞生长,这些输入向 Rag GTPases 发出信号,促进 mTORC1 易位到溶酶体表面(其激活位点)。这种途径在许多疾病中失调,包括糖尿病和癌症;然而,我们对氨基酸激活 mTORC1 的机制的理解并不完整。长期以来,一个谜团是氨基酸缺乏时抑制 mTORC1 的成分的身份。作为一名研究生,我推断负调节剂可能会影响 Rags,因为它们在营养感知中起着核心作用。我们对 Rags 进行了免疫沉淀,然后进行质谱分析 (IP/MS),结果发现了两个相互作用的蛋白质复合物,我们称之为 GATOR1 和 GATOR2。GATOR2 正向调节 mTORC1 并在 GATOR1 上游或与 GATOR1 并行发挥作用,GATOR1 是一种 Rag GTPase 激活蛋白,也是 mTORC1 的关键抑制剂。 GATOR1 成分在癌症中发生突变,可能有助于识别对 mTORC1 抑制有反应的癌症。第二个未解之谜是 mTORC1 上游氨基酸传感器的身份。为了识别假定的传感器,我们对已知的 mTORC1 调节剂进行了广泛的 IP/MS。我们发现 Sestrin2 和 CASTOR1 是与 GATOR2 相互作用的蛋白质,分别起到亮氨酸和精氨酸传感器的作用。Sestrin2 和 CASTOR1 与 GATOR2 结合以抑制 mTORC1,并且在存在氨基酸的情况下这种抑制会得到缓解。重要的是,这些传感器的氨基酸结合能力是 mTORC1 感知氨基酸存在所必需的。总之,这些成分的发现澄清了我们对氨基酸如何向 mTORC1 发出信号的理解,并提供了在疾病状态下调节 mTORC1 活性的目标。
糖尿病是一种多机构全身性疾病,影响了许多眼部结构,导致眼部发病率显着,并且通常会导致受影响个体的角膜和青光眼手术更频繁。我们假设在糖尿病进展中观察到的全身代谢和蛋白质组学危险会影响水幽默(AH)的组成,最终影响眼睛的前部段健康。为了识别与糖尿病进展相关的变化,我们绘制了来自II型diabetes(T2DM)患者的AH样本的代谢谱和蛋白质组。患者被归类为非糖尿病(ND或对照),非胰岛素依赖性糖尿病患者,没有疾病晚期特征(NAD-NI),胰岛素依赖性糖尿病,没有晚期特征(NAD-I)或具有晚期特征(AD)的糖尿病患者。aH样品分别通过气相色谱/质谱法和超高性能液相色谱串联质量规格评估了代谢物和蛋白质表达的变化。代谢和蛋白质组学途径分析是利用化合物分析剂4.0和Ingenuity途径分析进行的。包括14个对照,12个NAD-NI,4个NAD-I和14个AD样品进行分析。仅在糖尿病严重程度增加(即AD组)时发现了几种分支氨基酸(例如缬氨酸,亮氨酸,异亮氨酸)和脂质代谢物(例如棕榈酸酯)的水平升高。在氨基酸和脂肪酸代谢以及未折叠的蛋白质/应激反应中发现了相似的蛋白质组学趋势。这些结果代表了水性幽默的代谢组和蛋白质组学评估的首次报道。糖尿病会导致AH中的代谢和蛋白质组学扰动检测到可检测的,而随着T2DM严重程度恶化,独特的变化显现出来。AH组成的变化可能是疾病严重程度,前部细胞和结构的风险评估以及潜在的未来疗法的指标。
可食用的鸟巢(EBN)是豪华食品之一,由于其营养价值和治疗益处,被广泛用作健康食品。传统的EBN洗涤过程会导致体重和养分含量的减少,并且由于使用过氧化氢而增加了污染物。使用基于角蛋白分解酶的洗涤溶液在洗涤前后,使用一种探索性观察方法来检查Fuciphaga Colocalia fuciphaga的EB质量。EB清洁有四个阶段,即通过自来水,乙醇溶液,室温下的酶溶液和50 o C进行清洁,在40 o C下干燥42小时。使用AOAC方法分析了总共60个EBN(不干净,n = 30)和清洁,n = 30)。使用原子吸收分光光度计(AAS)的Ca,Fe,K和Mg的矿物质含量,除了通过分光光度计测量P。使用碳水化合物估计试剂盒测量糖蛋白含量,并使用HPLC方法确定氨基酸含量。对清洁度的评估是使用半训练的小组成员进行的评分系统进行的。获得的结果表明,干净的EBN颜色略淡黄色,清洁前后EB的清洁度从2.35增加到3.84。清洁EBN蛋白质含量降低了7.2%,而总氨基酸从38.51%降至32.71%。清洁EBN包含八个必需氨基酸,为17.93%,亮氨酸,缬氨酸,精氨酸和苏氨酸含量高(2.42-2.96%)。EBN的干净灰分含量从3.7%增加到7.8%。清洁EBN中的碳水化合物含量和铁分别为39.19±0.76%和14.35 mg/100 g干物质。高水平的碳水化合物和铁似乎是糖蛋白支持健康的良好来源,并有潜力作为贫血患者的铁的替代来源。可以使用基于角蛋白水解酶的梯田,乙醇和洗涤溶液进行逐步洗涤方法,以减轻体重减轻并改善EBN的质量。
酸)和含有神经蛋白的食欲刺激剂。植物提取物的抗菌活性可能存在于多种不同的成分中[4]。fenugreek(Trigonella foenum-graecum)属于Fabaceae家族,自远古时代以来一直是必不可少的香料[5]。细菌分为革兰氏染色的生物和未染色的生物。容易染色的生物分为四类:革兰氏阳性球菌,革兰氏阴性球,革兰氏阳性杆和革兰氏阴性杆[6,7]。Trigonella feonum-Graecum,通常被称为英格兰的Fenugreek,日本Koroha,India Methi和China Kudu,Fenugreek,fafaceae家族[8]。一年一度的植物,胡芦巴高度为20-60厘米。在长豆荚中成熟的叶子和种子,用于制备用于药用使用的提取物或粉末[9,10]。fenugreek具有改善生物系统健康和功能的许多营养和生物活性化合物。胡芦巴种子具有58%的碳水化合物,23-26%的蛋白质,0.9%的脂肪和25%的纤维。同样,胡芦巴是关键氨基酸的丰富来源,例如天冬氨酸,谷氨酰胺,亮氨酸,酪氨酸和苯丙氨酸[2]。Trigonella feonum-Graecum是记录史上认可的最古老的药用植物之一[11]。仍需要探索体外繁殖植物作为新药来源的潜在用途。基于几项研究性研究,在体内植物中产生的化合物可以在体外种植植物中以相同或不同的水平产生[12]。fenugreek种子具有降血糖和低血糖胆固醇症状,提高边缘葡萄糖消耗,有助于增强葡萄糖的接受度,并在胰岛素受体水平以及胃肠道水平上通过替代品对降糖影响受到降解影响[13];种子还用于治疗胃溃疡,肠炎,尿路感染[14],胡芦巴种子和芽芽剂可与革兰氏阴性菌的变化(例如Escherichia coli和Gram阳性)(例如金黄色葡萄球菌)进行操作[15]。