摘要 CRISPR-Cas9 被广泛用于基因组编辑,但其 PAM 序列要求限制了其效率。在本研究中,我们探索了 Faecalibaculum rodentium Cas9 (FrCas9) 用于植物基因组编辑,尤其是水稻。FrCas9 识别简洁的 5 0 -NNTA-3 0 PAM,与最流行的 SpCas9 的 5 0 -NGG-3 0 PAM 位点相比,它靶向植物基因组中更丰富的回文 TA 位点。FrCas9 在所有测试的 5 0 -NNTA-3 0 PAM 位点处均显示出切割活性,编辑结果与典型的 CRISPR-Cas9 系统具有相同的特征。FrCas9 在稳定的水稻品系中诱导高效靶向诱变,容易产生具有预期表型的双等位基因突变体。我们通过与核酸外切酶 TREX2 融合增强了 FrCas9 产生更大缺失的能力。 TREX2-FrCas9 产生的缺失比 FrCas9 大得多,且不会影响编辑效率。我们证明了 TREX2-FrCas9 是一种有效的 microRNA 基因敲除工具。此外,我们还开发了 FrCas9 衍生的胞嘧啶碱基编辑器 (CBE) 和腺嘌呤碱基编辑器 (ABE),用于在水稻植物中进行 C 到 T 和 A 到 G 的靶向碱基编辑。基于全基因组测序的脱靶分析表明 FrCas9 是一种高度特异性的核酸酶。然而,TREX2-FrCas9 在植物中的表达会导致可检测到的不依赖向导 RNA 的脱靶突变,主要是单核苷酸变体 (SNV)。我们共同建立了一种有效的 CRISPR-FrCas9 系统,用于在植物中进行靶向诱变、大量缺失、C 到 T 碱基编辑和 A 到 G 碱基编辑。 PAM 中的简单回文 TA 基序使 CRISPR-FrCas9 系统成为一种有前途的植物基因组编辑工具,具有扩大的靶向范围。
氯化溶剂羽流的修复是一项艰巨的技术挑战,因为只有少数几个地点已经证实能够将地下水完全恢复到原始状态。本情况说明书总结了造成这一困难的一个关键因素 - 基质扩散。基质扩散是地下水中的污染物最初从高渗透性区域(例如砂砾)中浓度较高的区域迁移到低渗透性介质(例如黏土砂、粉砂和粘土)的过程。当高渗透性区域的地下水羽流浓度降低时,这种扩散过程可以逆向发生(“反向扩散”),并且在主要污染源被移除或控制后很长一段时间内,可能成为难以管理的次要污染源。
Omega Therapeutics开发了一个可编程表观基因组mRNA药物的新型平台,能够修改染色质状态以在转录前的水平上特异性调节基因表达。OTX-2002是通过脂质纳米颗粒(LNP)传递的第一类mRNA治疗,是表观基因组控制剂(ECS)的临床发展。Mychelangelo I试验(NCT05497453)研究了肝细胞癌(HCC)患者对MYC对MYC的转录前抑制作用。OTX-2002编码两种蛋白质,这些蛋白质持久地通过MYC基因座的CpG DNA甲基化部分地修饰染色质。我们先前已经表明,EC定向的MYC甲基化会导致MYC表达的下调和HCC细胞活力在体外的损失和体内HCC异种移植生长的抑制。1
mRNA 疫苗在抗击 COVID-19 方面的成功,使 mRNA 疗法成为基因治疗中一个充满希望的领域,涵盖蛋白质替代、疫苗免疫学和再生医学等应用。1、2 尽管 mRNA 的脆弱性和负电荷带来了挑战,但人们已经探索了各种递送系统来加速 mRNA 疗法的开发,其中脂质纳米颗粒 (LNP) 成为临床前和临床研究中最成功和最主要的纳米载体。3 为了将这些纳米载体的成功扩展到更多基于 mRNA 的治疗领域,关键在于提高疗效同时最大限度地减少副作用,这强调了精准递送 mRNA 的重要性。实现精确的位点特异性 mRNA 递送需要仔细考虑各个层面的潜在障碍,包括器官、组织和细胞结构。 4 − 7 本观点深入探讨了纳米载体克服多层次障碍并实现位点特异性 mRNA 递送的靶向递送策略概述,包括优化给药途径、促进被动靶向和促进主动靶向(图 1)。目的是通过不同的靶向策略应对挑战并阐明优化 mRNA 递送系统的方向,从而释放 mRNA 治疗在各种应用中的潜力。■ 给药途径
在过去的十年中,对热位点表征的需求显着增加,尤其是用于设计地热能解决方案和地面电源电缆网络的设计。基于环境,地质,地球物理和岩土技术的地理位置,通常将位点的热表征结果纳入地面模型中。本文比较了土壤热位点表征的原位测试方法。比较认为方法适用性,部署方法,最大测试深度,测试持续时间和结果的不确定性。在三类原位测试之间进行了区分:(1)使用主动热产生的原位测试,(2)使用被动热量产生的原位测试和(3)没有特定热数据习得的原位测试。关键字:热位点表征;导热率;体积热容量;原位测试。
考虑到纳米孔测序的~5%测序错误(主要是插入和缺失)和供体片段的部分截断整合,我们在分配数据时基于预期的完美插入大小将间隔扩大±20%。然后,我们用正向骨架插入(Bf)、反向骨架插入(Br)、正向F8盒式插入(F8f)和反向F8盒式插入(F8r)的grepseqs分析了9个数据集特定长度范围内的数据。最后,我们计算出F8盒式插入和骨架整合的比例,分别为40.24%和44.47%。有趣的是,完全供体整合占总插入事件的14.16%,而其余的插入涉及两个相同的片段和三个片段的整合(图5B)。
摘要 CRISPR/Cas 系统已成为代谢工程和人类基因治疗中基因组编辑的有力工具。然而,使用 CRISPR/Cas 系统在染色体上定位整合异源基因的最佳位点仍然是一个悬而未决的问题。选择合适的基因整合位点需要考虑多个复杂的标准,包括与 CRISPR/Cas 介导的整合、遗传稳定性和基因表达相关的因素。因此,在特定或不同的染色体位置上识别此类位点通常需要大量的表征工作。为了应对这些挑战,我们开发了 CRISPR-COPIES,一种用于识别 CRISPR/Cas 促进的整合位点的计算流程。该工具利用 ScaNN,一种基于嵌入的最近邻搜索的先进模型,可快速准确地进行脱靶搜索,并可在几分钟内识别大多数细菌和真菌基因组的全基因组基因间位点。作为概念验证,我们利用 CRISPR-COPIES 来表征三个不同物种中的中性整合位点:Saccharom y ces cere visiae、Cupria vidus necator 和 HEK293T 细胞。此外,我们还为 CRISPR-COPIES 开发了一个用户友好的网页界面(https://biof oundry.web.illinois.edu/copies/)。我们预计 CRISPR-COPIES 将成为靶向 DNA 整合的宝贵工具,并有助于表征合成生物学工具包,实现快速菌株构建以生产有价值的生化产品,并支持人类基因和细胞治疗应用。
摘要:酶是许多工业应用必不可少的生物催化剂,但稳定性,选择性和受限的底物识别当前的使用限制。尽管酶工程在克服这些局限性方面的重要性,但通常会受到从天然来源衍生的酶的复杂建筑的挑战。计算方法的最新进展已使具有特定功能位点的简化支架的从头设计。这样的脚手架可能是酶工程平台的有利优势。在这里,我们提出了一种从从GH101酶家族的乙酰基乳糖苷酶活性位点(GH101酶家族的糖苷水解酶)的简化支架的从头设计的策略。使用Trrosetta幻觉,基于深度学习的结构预测的迭代循环以及蛋白质序列设计,我们设计了具有290个氨基酸的蛋白质,同时将分子量纳入了290个氨基酸,同时将分子量减少100 kDa,而不是初始的内膜α-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-乙酰乙酰基质抗乳酸化酶。在11种测试设计中,有6个表示为可溶性单体,与天然酶相比显示出相似或增加的恒温性。尽管缺乏可检测到的酶促活性,但代表性设计的实验确定的晶体结构以1.0Å的根平方偏差密切匹配设计,其催化性最重要的侧链在2.0Å之内。结果突出了脚手架幻觉在设计蛋白质中的潜力,该蛋白可能是后续酶工程的基础。关键字:从头设计,酶设计,糖苷水解酶,深网幻觉■简介
b'Abstract:模块化聚酮化合物合酶(PKS)是巨型组装线,产生了令人印象深刻的生物活性化合物。然而,我们对这些巨质的结构动力学的理解,特别是酰基载体蛋白(ACP)结合的构建块的递送到酮类合酶(KS)结构域的催化位点的构建块仍然受到严重限制。使用多管结构方法,我们报告了在根瘤菌毒素PK的链分支模块中C C键形成后域间相互作用的详细信息。基于机制的工程模块的交联,使用作为迈克尔受体的合成底物底座。交联蛋白使我们能够通过低温电子显微镜(Cryo-EM)在C键形成时鉴定出二聚体蛋白复合物的不对称态。AlphaFold2预测也指示了两个ACP结合位点的可能性,其中一个用于底物加载。NMR光谱表明,在溶液中形成了瞬态复合物,独立于接头结构域,并且具有独立域的光化学交联/质谱法使我们能够查明域间相互作用位点。在C C键形成后捕获的分支PK模块中的结构见解可以更好地理解域动力学,并为模块化装配线的合理设计提供了宝贵的信息。
通讯作者:Albert R. La Spada,医学博士,博士病理学与实验室医学,神经病学,生物化学和神经生物学与行为UCI UCI神经治疗学中心加利福尼亚州Irvine University of California Irvine Universion,CA,美国加利福尼亚州92697 Alaspada@uci.edu.edu /div>