本文提出了一种基于脑电图的大脑语言信号分类的更好解决方案,它使用机器学习和优化算法。该项目旨在通过实现更高的准确性和速度来取代语言处理任务中的脑信号分类。本研究使用改进的离散小波变换 (DWT) 进行特征提取,通过将脑电图信号分解为显著的频率分量,提高了适当捕获信号特征的能力。应用灰狼优化 (GWO) 算法方法来改进结果并选择最佳特征,通过选择具有最大相关性的有影响力的特征同时最小化冗余,获得更准确的结果。这种优化过程总体上提高了分类模型的性能。在分类的情况下,提出了支持向量机 (SVM) 和神经网络 (NN) 混合模型。这结合了 SVM 分类器在高维空间中管理函数的能力,以及神经网络利用其特征进行非线性学习(模式学习)的能力。该模型在脑电图数据集上进行了训练和测试,分类准确率为 97%,表明我们的方法的稳健性和有效性。结果表明,这种改进的分类器可用于脑机接口系统和神经系统评估。机器学习和优化技术的结合已确立了这一范式,成为进一步研究脑语言识别脑电信号处理的一种高效方法。
研究问题的简介DLRL方向查找器(DF)系统当前使用方位角轴承来识别频率料斗信号,并在三个类别中对检测到的信号进行分类,即固定频率(FF),频率料斗(FH)和爆发。DF系统在频域中进行扫描,并执行所有检测到的信号的DF。由于信号处理是基于框架/批次的,并在频域中进行,并且在每个通道中并行,因此爆发和单个啤酒花的时间持续时间估计的准确性受到限制,因此,快速料斗的Hop速率估计值不准确。使用来自两个或五个DF天线中的每个DF天线中的时域iQ数据基于深度学习/机器学习的算法,以将接收的信号分类为FF,FF和爆发。培训数据需要由适当的数学模型生成,该模型应允许引入噪声和褪色。产生的信号应允许以瞬时带宽内的不同频率同时存在多个信号。预计它将能够估算200个微秒的次数和爆发持续时间。需要使用仿真验证所提出的方法的性能,并使用使用商业阶段相干的信号采集硬件(最少2个通道)生成或捕获的数据在工作站/笔记本电脑或PC上测试。dlrl寻求与学术机构一起开发和实施复杂的统计数字信号处理算法的解决方案。
研究问题的简介DLRL方向查找器(DF)系统当前使用方位角轴承来识别频率料斗信号,并在三个类别中对检测到的信号进行分类,即固定频率(FF),频率料斗(FH)和爆发。DF系统在频域中进行扫描,并执行所有检测到的信号的DF。由于信号处理是基于框架/批次的,并在频域中进行,并且在每个通道中并行,因此爆发和单个啤酒花的时间持续时间估计的准确性受到限制,因此,快速料斗的Hop速率估计值不准确。使用来自两个或五个DF天线中的每个DF天线中的时域iQ数据基于深度学习/机器学习的算法,以将接收的信号分类为FF,FF和爆发。培训数据需要由适当的数学模型生成,该模型应允许引入噪声和褪色。产生的信号应允许以瞬时带宽内的不同频率同时存在多个信号。预计它将能够估算200个微秒的次数和爆发持续时间。需要使用仿真验证所提出的方法的性能,并使用使用商业阶段相干的信号采集硬件(最少2个通道)生成或捕获的数据在工作站/笔记本电脑或PC上测试。dlrl寻求与学术机构一起开发和实施复杂的统计数字信号处理算法的解决方案。
摘要:准确识别人类的情绪状态对于高效的人机交互 (HRI) 至关重要。因此,我们见证了人们在开发基于各种生物信号的稳健且准确的脑机接口模型方面所做的大量研究。特别是,先前的研究表明,脑电图 (EEG) 可以深入了解情绪状态。最近,研究人员提出了各种手工制作的深度神经网络 (DNN) 模型来提取与情绪相关的特征,这些模型对噪声的鲁棒性有限,从而导致精度降低和计算复杂度增加。迄今为止开发的 DNN 模型被证明可有效提取与情绪分类相关的稳健特征;然而,它们巨大的特征维数问题导致了高计算负荷。在本文中,我们提出了一个混合深度特征袋 (BoHDF) 提取模型,用于将 EEG 信号分类到各自的情绪类别中。通过在特征提取阶段之前将 EEG 信号转换为 2D 频谱图,BoHDF 的不变性和鲁棒性得到进一步增强。这种时频表示与 EEG 模式的时变行为非常吻合。在这里,我们建议将 GoogLeNet 全连接层(最简单的 DNN 模型之一)的深度特征与我们最近开发的基于纹理的 OMTLBP_SMC 特征相结合,然后使用 K 最近邻 (KNN) 聚类算法。在 DEAP 和 SEED 数据库上进行评估时,所提出的模型分别实现了 93.83% 和 96.95% 的识别准确率。使用所提出的基于 BoHDF 的算法的实验结果显示,与之前报道的具有类似设置的工作相比,性能有所提高。
通过大脑活动过程中产生的信号[10]。BCI的目的是建立人脑与计算机之间的通信链路,它提供了一种不使用肌肉将脑电波转化为物理效应的方法[11]。在BCI技术诞生的几十年里,脑电图(EEG)信号分类方法的研究一直是BCI技术不断发展的驱动力。EEG是BCI系统中的一种非侵入式采集方法[1]。它通过将电极放置在头皮上来检测微弱的EEG信号,并记录脑神经活动过程中电信号的变化。然而,由于EEG在穿过大脑皮层到头皮时会大大减弱,提取出的信号的信噪比极低,增加了后续特征提取和分类的难度[13]。传统的分类方法很难找到很好区分和代表性的特征来设计具有优异性能的分类模型。然而,近年来,深度学习方法在图像和语音领域取得了巨大的成功,例如良好的泛化能力以及对数据特征的逐层自动学习[12]。本研究创建了一个可以识别和自动提取脑电信号特征的卷积神经网络,并使用来自同一公共数据库的数据比较了传统特征提取和分类方法的准确性。我们在这个项目中使用了PhysioNet脑电数据,该数据由109名受试者的1500多个一分钟和两分钟的脑电图记录组成。我们的工作目标是通过检测从八个头皮通道获得的脑电活动来探索快速傅里叶变换(FFT)信号分析技术,以区分睁眼(EO)和闭眼(EC)两种状态。
运动图像(MI)脑电图(EEG)分类是脑机构界面(BCI)的重要组成部分,使具有流动性问题的人可以通过辅助设备与外界进行通信。但是,由于其复杂性,动态性质和低信噪比,EEG解码是一项艰巨的任务。设计一个充分提取EEG信号的高级特征的端到端框架仍然是一个挑战。在这项研究中,我们提出了一个平行的空间 - 暂时性自我注意力,用于四级MI EEG信号分类。这项研究是定义原始脑电图信号的新时空表示的第一个研究,该信号使用自我注意力的机制提取可区分的时空特征。特别是,我们使用空间自我注意模块来捕获MI EEG信号通道之间的空间依赖性。此模块通过通过加权求和在所有通道上汇总特征来更新每个通道,从而提高了分类准确性并消除由手动通道选择引起的伪像。此外,时间自我发项模块将全局时间信息编码为每个采样时间步骤的特征,因此可以在时域中提取MI EEG信号的高级时间特征。定量分析表明,我们的方法优于主体内和受试者间分类的最先进方法,证明其稳健性和有效性。最后,采用提出的方法根据脑电图信号实现对无人机的控制,从而验证其在实时应用中的可行性。在定性分析方面,我们对从学到的架构估算的新时空表示形式进行视觉检查。
运动图像(MI)脑电图(EEG)分类是脑机构界面(BCI)的重要组成部分,使具有流动性问题的人可以通过辅助设备与外界进行通信。但是,由于其复杂性,动态性质和低信噪比,EEG解码是一项艰巨的任务。设计一个充分提取EEG信号的高级特征的端到端框架仍然是一个挑战。在这项研究中,我们提出了一个平行的空间 - 暂时性自我注意力,用于四级MI EEG信号分类。这项研究是定义原始脑电图信号的新时空表示的第一个研究,该信号使用自我注意力的机制提取可区分的时空特征。特别是,我们使用空间自我注意模块来捕获MI EEG信号通道之间的空间依赖性。此模块通过通过加权求和在所有通道上汇总特征来更新每个通道,从而提高了分类准确性并消除由手动通道选择引起的伪像。此外,时间自我发项模块将全局时间信息编码为每个采样时间步骤的特征,因此可以在时域中提取MI EEG信号的高级时间特征。定量分析表明,我们的方法优于主体内和受试者间分类的最先进方法,证明其稳健性和有效性。最后,采用提出的方法根据脑电图信号实现对无人机的控制,从而验证其在实时应用中的可行性。在定性分析方面,我们对从学到的架构估算的新时空表示形式进行视觉检查。
摘要 - 驾驶员嗜睡是导致运输行业道路死亡和危害的主要因素之一。脑电图(EEG)被认为是检测驾驶员昏昏欲睡状态的最佳生理信号之一,因为它直接测量了大脑中的神经生理活性。但是,设计一个无校准的系统,用于用脑电图设计驾驶员的嗜睡检测仍然是一项艰巨的任务,因为脑电图遭受了不同受试者的严重精神和身体漂移。在本文中,我们提出了一个紧凑且可解释的卷积神经网络(CNN),以发现不同受试者跨主题的共享脑电图特征,以进行驾驶员嗜睡检测。我们将全局平均池(GAP)层纳入模型结构中,从而允许类激活图(CAM)方法用于定位对分类最大的输入信号的区域化区域。结果表明,对于2级跨受试者EEG信号分类,提出的模型可以实现11名受试者的平均准确性,高于常规机器学习方法和其他最先进的深度学习方法。通过可视化技术揭示了该模型在生物学上可以解释的特征,例如α纺锤体和theta爆发,作为昏昏欲睡状态的证据。也很有趣的是,该模型使用通常主导着觉醒的脑电图,例如肌肉伪影和传感器漂移来识别警报状态。代码可从:https://github.com/cuijiancorbin/a-compact-and-interpretable-convolutional-neural-network- for single-channel-eeg提出的模型说明了使用CNN模型作为一个强大工具的潜在方向,以发现与EEG信号不同受试者的不同心理状态相关的共享特征。
摘要:心电图分类或心跳分类是心脏病学中极为有价值的工具。基于学习的深度技术,用于分析ECG信号的技术有助于人类专家及时诊断心脏疾病,并有助于挽救宝贵的生命。本研究旨在将ECG记录图像的数据集数字化到时间序列信号,然后在数字化数据集上应用深度学习(DL)技术。提出了将ECG信号分类为不同心脏类别的最新DL技术。多个DL模型,包括卷积神经网络(CNN),长期的短期记忆(LSTM)网络以及使用自动编码器的基于自律的学习(SSL)模型,并在本研究中进行了比较。这些模型是由来自巴基斯坦各种医疗机构的患者的ECG图产生的数据集培训。首先,将ECG图像数字化,将Lead II心跳分段,然后将数字化信号传递给了提出的分类深度学习模型。在本研究中使用的不同DL模型中,提出的CNN模型达到了约92%的最高精度。所提出的模型非常准确,并为实时和直接监视ECG信号提供了快速推断,这些ECG信号是从放置在身体不同部位上的电极(传感器)中捕获的。使用ECG信号的数字化形式而不是图像进行心律失常分类,可以使心脏病学家直接从ECG机器上直接在ECG信号上使用DL模型,以实时和准确地监视ECGS。
监测人脑活动对于了解大脑功能、预防精神疾病和改善生活质量具有巨大潜力。为此,EEG 系统必须从当今临床实践中经常使用的有线、固定和笨重的系统转变为提供高信号质量的智能可穿戴、无线和舒适的生活方式解决方案。可穿戴设备上的连续监测要求自动 EEG 分类算法既准确又轻量。这是我们在本文中的主要关注点。请注意,可穿戴设备的处理器很小且有限,与台式机和服务器处理器相比要慢得多。许多以前的算法都是基于经典信号处理技术 [1][2]。由于 EEG 信号特征在不同情况下和不同人之间存在显著差异,因此此类算法中使用的固定特征不足以准确区分所有人的不同类型的疾病。为了自动提取特征并提高脑信号分类准确性,最近提出了基于深度学习的算法,包括深度卷积神经网络 (CNN) 和循环神经网络 (RNN) [3][4]。用于序列学习的最流行和最有效的 RNN 模型之一是长短期记忆 (LSTM) [5]。LSTM 旨在对长程依赖关系进行建模,而 RNN 的记忆备份起着重要作用,因此它们比传统的 RNN 更准确、更有效。本文重点介绍基于 LSTM 循环神经网络的 EEG 分类算法。所提出的方法采用 RNN,因为 EEG 波形自然适合用这种类型的神经网络进行处理。与其他类型的神经网络相比,RNN 可以更有效地捕获序列数据中的时间依赖关系。然而,高分类准确率的代价是