材料科学主要研究固体材料的性质以及材料的成分和结构如何决定这些性质。材料科学研究和应用不同的材料,通常分为四类,即金属、聚合物、半导体和陶瓷。半导体、金属和陶瓷如今用于形成高度复杂的系统,例如集成电路、光电设备以及磁性和光学大容量存储介质。这些材料构成了我们现代计算世界的基础,因此对这些材料的研究至关重要。聚合物是由大量相同成分组成的化合物,这些成分以类似链条的方式连接在一起。它们是材料科学的重要组成部分。聚合物是制造通常称为塑料和橡胶的原材料(树脂)。只要对性能的起源有基本的了解,就可以选择或设计材料以用于各种各样的应用,从结构钢到计算机微芯片。因此,材料科学对于电子、航空航天、电信、信息处理、核能和能源转换等工程活动非常重要。
摘要:激子极化子代表了一种有前途的平台,它结合了光子和电子系统的优势,可用于未来的光电设备。然而,由于制造方法成本高、复杂,与为微电子开发的成熟 CMOS 技术不兼容,因此它们的应用目前仅限于实验室研究。在这项工作中,我们开发了一种创新、低成本且与 CMOS 兼容的方法来制造大表面极化子设备。这是通过热纳米压印直接图案化卤化物钙钛矿薄膜来实现的。结果,我们在室温下观察到厘米级上质量因子 Q ≈ 300 的高度均匀的极化子模式。令人印象深刻的是,该工艺提供了高可重复性和保真度,因为同一个模具可以重复使用 10 次以上,以将钙钛矿层压印在不同类型的基板上。我们的研究结果可以为生产在室温下运行的低成本集成极化子设备铺平道路。
关于2D材料的主题,我们提供了一个兼职职位(每周65%,26小时,薪金组E 13 TV-L),最初限制为3年。成功的候选人将加入由Andrey Turchanin教授(https://www.apc.uni-jena.de/)领导的一个高度积极进取的跨学科实验研究小组。该小组专注于与无机和有机二维(2D)材料的纳米科学和纳米技术有关的物理,化学和材料科学方面。该小组的主要研究领域包括使用最新的光谱和显微镜技术对其物理和化学性质的纳米级增长,以及其在电子,光子和光电设备中的功能特性的表征,包括现场效果晶体透明剂,光电材料,光电材料,化学材料和Biochem和Biochem,化学和Biochem,Biochem,Biochem和Biochem,Biochem,Biochem,Biochem,Biochem,Biochem,Biochem,Biochem,Biochem,Biochem,Biochem,Biochem,Biochem,Biochem,Biochem,Biochem和Biochem。您的职责:
宣布IEEE Photonics Journal的功能部分专门针对:光电设备的数值模拟IEEE Photonics Journal将发布一个专用于光电设备的数值模拟的功能部分。本期的目的是收集在印度新德里举办的光电设备数字模拟会议上提出的扩展版本的论文(Nusod 2024),也向不介绍的会议主题的原始手稿开放。本特征部分欢迎对半导体激光器的建模和模拟的最新开发(边缘发射,VCSEL,VCSEL,VECSELS和PCSELS),发光二极管,光学调节剂,光学调节剂,光学放大器,光电材料,光电电池,SOLAR,光电器,光电设备和循环的材料,运动型和循环材料,运动型和电路的材料,循环和循环的材料,现有二极管,光电调节器,光学调节器,光电放大器,光电材料和循环材料,并有效。光电子。我们鼓励提交,这些提交重点介绍新的和新兴的研究领域,以及那些为该领域实践问题提供新颖解决方案的提交。我们期待收到您的意见书并展示光子学期刊中光电学领域的最新发展。提交从2024年10月1日开始,提交手稿的截止日期为2025年3月1日。应该在https://ieee.atyponrex.com/journal/pj-ieee上在线进行,其中符合IEEE Photonics Journal Standards的论文。所有提交将根据《杂志出版物》规则进行严格的同行评审过程。建议作者仔细审查并遵守我们的提交指南,该指南可以在网站上找到。请确保将纸张类型标记为“光电设备的数值模拟”,而不是原始纸张。作者可以联系下面的任何人,以获取更多信息或网站https://www.photonicssociety.org/publications/photonics-journal/call-for-papers。Guest Editors Prof. Paolo Bardella Politecnico di Torino, Italy Dr. Rikmantra Basu National Institute of Technology Delhi, India Dr. Kankat Ghosh Indian Institute of Technology Jammu, India Dr. Riddhi Nandi GlobalFoundries, Bangalore, India Staff Yvette Charles PJ Editorial Office IEEE/Photonics Society 445 Hoes Lane Piscataway, NJ 08854 USA电话:732-981-3457电子邮件:y.charles@ieee.org
对应物。[2]因此,2D材料非常适合柔性光电子,并且有可能用于下一代超薄电子和光电设备。[1]在2004年发现石墨烯时,首先实现了2D材料的概念。[4]石墨烯对其出色的电气,光学和机械性能引起了广泛的关注。[4-6]已经研究了各种技术应用,包括Spintronics,sensors,opetelectronics,SuperCapitors和Solar Cells等。[5,7] Besides graphene, other 2D materials, such as h-BN, phosphorene, silicene, germanene, and transition metal dichalcogenides (molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ), and tungsten diselenide (WSe 2 ), etc.),近年来已经进行了广泛的研究。[1,8–11]单层二维材料的厚度通常在订单上或小于1 nm。同时,它们的侧向尺寸可以达到更大的尺寸(从微米到偶数英寸),并且在随后的处理或进行特征或设备应用程序的后续处理或后续测量之前,可以将2D材料转移到不同的基板上。
低维ZnO的材料在过去的几十年中引起了很多关注,因为它们在光电设备中的独特电子和光学支持以及潜在的应用。在本教程中,我们将根据激子和相关的激光过程介绍ZnO薄膜和微型/纳米结构的过去和最新发展。首先,我们简要概述了ZnO的结构和频带特性以及线性光学和激子特性。第二,我们引入了一种以各种形式的ZnO激光的反馈机制,从纳米颗粒到纳米线,纳米丝和薄膜。至于反馈机制,对随机激光,Fabry - PérotLasing和耳语画廊模式激光进行了详细的描述。第三,我们讨论了可能的增益机制,即ZnO中的含量增益和电子血浆(EHP)增益。特殊的兴趣也用于Mott载体密度,这是区分激光和EHP对激光贡献的关键参数。最后,引入了基于ZnO微腔的激子激光的最新发展。
原子上薄的半导体异质结构提供了一个二维(2D)设备平台,用于产生高密度的冷,可控制的激子。中间层激元(IES),绑定的电子和孔定位于分开的2D量子井层,具有永久的平面外偶极矩和长寿命,从而可以根据需要调整其空间分布。在这里,我们采用静电门来捕获并控制它们的密度。通过电气调节IE鲜明的偏移,可以实现2×10 12 cm-2以上的电子孔对浓度。在此高IE密度下,我们观察到指示了指示IE离子化过渡的线宽扩大,而与陷阱深度无关。该失控的阈值在低温下保持恒定,但增加了20 K,与退化IE气体的量子解离一致。我们在可调静电陷阱中对IE离子化的演示代表了朝着实现固态光电设备中偶极激子冷凝物实现的重要步骤。
从2024年4月开始全日制演讲,于7月底或2024年9月开始:光电和喷墨印刷机构:巴塞罗那大学城市:巴塞罗那,国家 /地区:西班牙大师论文的标题:Inkjet印刷矩阵的LED和图像传感器,带有Perovskite材料的Sergs和Coarr sergior and coarr theisor and corergi: Hernández Email address: blas.garrido@ub.edu Phone number: +34 93 4039151 Mail address: Department of Electronic and Biomedical Engineering, Martí I Franquès 1, 08028 Barcelona Keywords: inkjet printing, LEDs, photodiodes, image sensors, perovskites, optoelectronics Summary of the subject (maximum 1 page):光电设备(LED,光电视,激光,太阳能电池,显示器,传感器)变得像电子电路或芯片本身一样必不可少。根据经济数据分析网站的优先研究(https://www.precedencerearkearch.com/),全球光电电子市场在2022年的价值为65.4亿美元,在2023年达到73.6亿美元,估计达到2032年,估计为212亿美元,并在2032年达到212亿美元,并占203美元的年度增长率(CAGR)(CAGR)(CAGR)(cagr)(cagr)占2.4次(C)。 2032。在制造光电设备和光子集成设备(图片)中,有许多技术平台和材料,包括化合物半导体III-V(例如GAAS,INP,INP,GAN)及其三元和Quaternary合金,氧化物,金属氧化物(Zno,SNO 2,ii-ii-vi or canse and Chalcogenides)(ZNS,ZNS,ZNS,ZNS,CONTED)半导体。因此,图片是在半导体铸造厂制造的,其中大多数位于欧洲以外,尤其是在远东地区。我们提出所有这些设备和技术都需要在高温下运行,使用有毒气体和化学物质的复杂沉积设备,并依靠大型光刻技术来定义电路。但是,最好使用替代或互补的半导体材料以及更易于访问和具有成本效益的技术。钙钛矿卤化物是在解决方案中处理的,不需要大量资源使用。它们是在室温下在解决方案中处理的材料,不需要大量的能源来生产,不需要有害的气体或化学物质,并且是丰富的材料。因此,他们的生产不取决于主流微电子和光子学技术的复杂供应链。由于所有这些原因,它们有助于可持续性,并且比传统半导体具有更小的环境影响和碳足迹。
1纳米科学技术中心,奥兰多市中心大学 - 美国佛罗里达州32826。 2 Creol,佛罗里达州中部佛罗里达大学的光学与光子学院,美国佛罗里达州32816,美国。 3佛罗里达州中部佛罗里达大学化学系32816,美国4材料科学与工程系,佛罗里达州中部佛罗里达大学,奥兰多,佛罗里达州,佛罗里达州32816,美国。 5物理系,佛罗里达州中部奥兰多市,佛罗里达州32816,美国。 有机无机卤化物钙钛矿量子点(PQD)构成了用于光电设备应用的吸引人的材料,因为它们的独特特性,例如宽带宽度吸收,高灭绝系数和长的电子孔 - 孔 - 孔 - 孔孔扩散长度。 但是,它们的电荷传输特性不如石墨烯。 另一方面,石墨烯的电荷产生效率太低,无法在许多光电应用中使用。 目前无法使用有效的光生成和快速电荷传输的石墨烯-PQD(G-PQD)上层建筑。 在本文中,我们使用新型缺陷介导的生长机制直接从石墨烯晶格中生长PQD制备的G-PQDS上层结构,展示了超薄的光晶体管和光子突触。 我们的模拟和实验结果表明,从石墨烯晶格中生长的PQD可以提供有效的途径,将光激发电荷直接传输到石墨烯,从而同步有效的电荷产生和在单个平台上同步。 但是,单层的石墨烯仅吸收2.3%的事件可见光11。 这些1纳米科学技术中心,奥兰多市中心大学 - 美国佛罗里达州32826。2 Creol,佛罗里达州中部佛罗里达大学的光学与光子学院,美国佛罗里达州32816,美国。3佛罗里达州中部佛罗里达大学化学系32816,美国4材料科学与工程系,佛罗里达州中部佛罗里达大学,奥兰多,佛罗里达州,佛罗里达州32816,美国。5物理系,佛罗里达州中部奥兰多市,佛罗里达州32816,美国。 有机无机卤化物钙钛矿量子点(PQD)构成了用于光电设备应用的吸引人的材料,因为它们的独特特性,例如宽带宽度吸收,高灭绝系数和长的电子孔 - 孔 - 孔 - 孔孔扩散长度。 但是,它们的电荷传输特性不如石墨烯。 另一方面,石墨烯的电荷产生效率太低,无法在许多光电应用中使用。 目前无法使用有效的光生成和快速电荷传输的石墨烯-PQD(G-PQD)上层建筑。 在本文中,我们使用新型缺陷介导的生长机制直接从石墨烯晶格中生长PQD制备的G-PQDS上层结构,展示了超薄的光晶体管和光子突触。 我们的模拟和实验结果表明,从石墨烯晶格中生长的PQD可以提供有效的途径,将光激发电荷直接传输到石墨烯,从而同步有效的电荷产生和在单个平台上同步。 但是,单层的石墨烯仅吸收2.3%的事件可见光11。 这些5物理系,佛罗里达州中部奥兰多市,佛罗里达州32816,美国。有机无机卤化物钙钛矿量子点(PQD)构成了用于光电设备应用的吸引人的材料,因为它们的独特特性,例如宽带宽度吸收,高灭绝系数和长的电子孔 - 孔 - 孔 - 孔孔扩散长度。但是,它们的电荷传输特性不如石墨烯。另一方面,石墨烯的电荷产生效率太低,无法在许多光电应用中使用。目前无法使用有效的光生成和快速电荷传输的石墨烯-PQD(G-PQD)上层建筑。在本文中,我们使用新型缺陷介导的生长机制直接从石墨烯晶格中生长PQD制备的G-PQDS上层结构,展示了超薄的光晶体管和光子突触。我们的模拟和实验结果表明,从石墨烯晶格中生长的PQD可以提供有效的途径,将光激发电荷直接传输到石墨烯,从而同步有效的电荷产生和在单个平台上同步。但是,单层的石墨烯仅吸收2.3%的事件可见光11。这些厚度小于20 nm的光晶体管使用该G -PQD上层建筑制备的响应性出色的响应性为1.4×10 8 AW -1,在430 nm处的特异性检测性为4.72×10 15 Jones。此外,上层建筑的光辅助记忆效应使我们能够以36.75 PJ/ SPIKE的低能消耗来证明光子突触行为,这与神经形态计算高度相关。我们通过在机器学习的帮助下证明面部识别来揭示其在神经形态计算中的应用。我们预计PQD上层建筑将在开发高效和超薄的光电设备方面加强新的方向。引言石墨烯是电子和光电应用的理想材料,这是由于其广泛的光谱带宽,出色的运输属性具有很高的迁移率(电子迁移率> 15000 cm2Åv-1·S -1),在环境条件下的特殊稳定性和出色的灵活性稳定性和出色的灵活性1-6。已经开发了大量的复合材料和设备,用于在能量收集和存储中应用,光电遗传学和晶体管7-10。迄今为止,石墨烯光电探测器的响应性仅限于10 -2 AW -1。
摘要:具有较高载流子迁移率的二维半导体的发现和设计对于高速电子和光电设备至关重要。在此基于高通量计算的基础上,我们确定了一组半导体,硫磺halide halides irsx'(x'= f,cl,br,i),具有较高的载流量(〜10 3 cm 2 v-1 s-1)和高效的光收获(〜34%)。此外,这些材料表现出各向异性的平面运输行为,这是通过铁弹性开关进行切换的,从而提供了单层IRSX的巨大潜力,可用于在方向控制的高速电子和Optoelectronic设备中应用。高载体迁移率和各向异性转运是源自在矩形晶格中的传导带最小值(CBM)和价带最大值(VBM)的IR原子3D轨道的各向异性分布。ML IRSX's(X'= F,Cl,Br)显示出良好的动力学和热稳定性,并且根据相图计算在热力学上稳定,因此未来值得实验实现。