摘要。P2X7嘌呤能受体(P2X7R)是一种非选择性的阳离子通道,该通道被高水平的三磷酸腺苷激活,通常存在于严重条件下。这种嘌呤能受体的激活与各种疾病状态的发展密切相关,包括炎症和神经退行性疾病,骨科疾病和癌症类型。积累的证据表明,P2X7R在各种心脏病的发展中起着至关重要的作用。例如,P2X7RS的激活可以通过释放内源性心脏保护物质来减轻心肌缺血 - 再灌注损伤。与这些发现相反,P2X7R的激活可以通过诱导炎症反应来促进急性心肌梗塞和肌肉炎的发展。这些受体的激活还可以促进不同类型的心肌病的发展,包括糖尿病心肌病,扩张性心肌病和肥大性心肌病,通过诱导心脏肥大,纤维化和凋亡。值得注意的是,抑制P2X7R可以改善急性心肌梗死后心脏结构和功能异常,心肌炎后炎症反应减少以及心肌病过程的衰减。此外,最近的证据表明,P2X7RS在感染冠状病毒疾病的患者中高度活跃(Covid -19)。在19.19中P2X7RS的过度激活可能通过激活多种信号通路引起严重的心肌损伤。本研究回顾了P2X7R在心脏功能障碍和
嘌呤受体 P2X 配体门控离子通道 7 型 (P2X7R) 是一种三磷酸腺苷 (ATP) 门控离子通道。1-3 P2X7R 广泛存在于身体几乎所有组织和器官中,并在免疫、外周和中枢神经系统中高度表达,因此该受体在健康和疾病中发挥着重要作用。4-6 P2X7R 的过度表达与许多下游事件有关,以细胞特异性的方式进行,包括炎症、ATP 介导的细胞增殖和死亡、代谢事件和吞噬作用,并与多种炎症、免疫、癌症、神经、肌肉骨骼和心血管疾病有关。7-12 P2X7R 是一个有吸引力的治疗靶点,许多 P2X7R 拮抗剂已被开发用于治疗与 P2X7R 相关的疾病,如炎症、感染、神经、癌症和心脏疾病。 13-17 因此,P2X7R 已成为一个有趣的分子成像靶点,因为成像剂的开发与药物开发过程同步进行。18 先进的生物医学成像技术正电子发射断层扫描 (PET) 和单光子发射计算机断层扫描 (SPECT) 是两种有前途的分子成像方式,
属 要测量 直接属 高sensi 分析 对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。 我们还对来自牛脑和肝脏的Na要测量 直接属 高sensi 分析 对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。 我们还对来自牛脑和肝脏的Na直接属 高sensi 分析 对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。 我们还对来自牛脑和肝脏的Na高sensi 分析 对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。 我们还对来自牛脑和肝脏的Na分析 对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。 我们还对来自牛脑和肝脏的Na对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。我们还对来自牛脑和肝脏的Na
系统已被探索作为有效的选择剂来消除未编辑的细胞,从而大大简化了细菌中的基因操作过程。9尽管基于 CRISPR/Cas 的基因组编辑方法简单且高效,但它们仍然依赖于细菌中的 HR 来实现精确的基因操作,因此难以在某些缺乏强大 HR 系统的细菌(如结核分枝杆菌)中建立。最近,脱氨酶介导的碱基编辑系统的发展为生物学中的精确基因操作提供了新策略。10 – 12碱基编辑系统使用脱氨反应和随后的 DNA 复制过程直接转换目标碱基,而不是前面提到的基于 CRISPR/Cas 的基因组编辑方法中所利用的 HR。已经建立了两种主要类型的碱基编辑系统:胞嘧啶碱基编辑器(CBE)10,11 和腺嘌呤碱基编辑器(ABE)。 12,13 CBE 已广泛用于各种生物体(包括真核生物 10,11,14 - 17 和一些细菌物种 17 - 22)中的可编程胞嘧啶到胸腺嘧啶的转化,而 ABE 主要在真核生物中建立,例如哺乳动物细胞 12,23 和植物 24,25,用于精确的腺嘌呤到鸟嘌呤的转化。最近,在链霉菌中开发了一种名为 CRISPR-aBEST 的 ABE 系统。13 此外,还开发了可编程的腺苷到肌苷和胞苷到尿苷的 RNA 编辑器。26,27
摘要 炎症是引起干眼病(DED)眼表损害的潜在因素之一,越来越多的证据表明嘌呤能A 1 、A 2A 、A 3 、P2X4、P2X7、P2Y 1 、P2Y 2 和P2Y 4 受体在DED炎症调控中起重要作用:A 1 腺苷受体(A 1R )是全身促炎因子;A 2AR参与激活MAPK/NF-kB通路;A 3R结合腺苷酸环化酶的抑制和丝裂原活化蛋白激酶(MAPK)通路的调控导致转录调控;P2X4促进受体相关的促炎细胞因子和炎性小泡的激活; P2X7促进炎症小体活化,促炎细胞因子IL-1β和IL-18的释放;P2Y受体影响磷脂酶C(PLC)/IP3/Ca 2+信号通路和黏蛋白的分泌,提示嘌呤受体有望成为未来控制DED炎症的靶点。
摘要:子宫内膜异位症是一种依赖雌激素的妇科疾病,具有相关的慢性炎症成分,其特征在于子宫腔外的子宫内膜组织。其主要症状是疼痛,这种情况显然改变了疾病女性的生活质量。本综述旨在详尽地收集有关子宫内膜异位症相关疼痛中嘌呤能信号传导的当前知识。因核苷酸酶活性的变化而改变的细胞外ATP水解已在子宫内膜异位症中报道。 ATP在子宫内膜微环境中产生的积累表明核苷酸受体(P2受体)的持续激活能够产生持续的疼痛信息。P2X3受体,在感觉神经元中表达,介导伤害性,神经性疼痛和炎症性疼痛,并参与与子宫内膜异位相关的疼痛。对P2X3受体的药理抑制作用正在评估是子宫内膜异位症女性的疼痛治疗。此处还讨论了其他ATP受体的作用,例如P2X4和P2X7受体,这些受体参与了炎症细胞 - 粘膜和小胶质细胞 - 脑串扰,因此在炎性弹药和神经性疼痛中。腺苷受体(P1受体)主要扮演抗伤害感受和抗渗透性角色。尖锐的靶向药物,包括核苷酸受体和代谢酶,是用于子宫内膜异位相关疼痛的药理学管理的潜在非激素治疗工具。
硫唑嘌呤是活性代谢物 6-巯基嘌呤的前体药物,长期以来人们认为其主要作用机制是通过阻断诸如酰胺磷酸核糖基转移酶之类的酶来抑制嘌呤腺嘌呤和鸟嘌呤的合成,从而产生无功能的核酸链。从头嘌呤合成的中断会抑制 DNA 和 RNA 的合成,从而抑制淋巴细胞等快速生长细胞的增殖。淋巴细胞特别容易受到从头嘌呤合成抑制的影响,因为它们相对缺乏嘌呤合成的替代途径,即嘌呤“补救”途径,在该途径中核苷酸由核苷酸降解产物重新合成。然而,在过去的几十年里,人们提出了多种由各种硫唑嘌呤代谢物介导的其他作用机制,包括阻断 T 细胞活化和刺激 T 细胞凋亡。长期以来有报道称硫唑嘌呤对 T 细胞功能比对 B 细胞功能更有效,尽管缺乏有力的证据支持这一点,而且我们实验室最近的研究表明硫唑嘌呤可以抑制 B 细胞和 T 细胞增殖。
a 四川大学华西医院肿瘤中心、生物治疗国家重点实验室、华西基础医学院和法医学院生物治疗科、生物治疗协同创新中心,成都 610041 b 重庆医科大学附属第二医院感染科、病毒性肝炎研究所、传染病分子生物学教育部重点实验室,重庆 400016 c 新加坡国立大学综合科学与工程研究生院,新加坡 117573,新加坡 d 新加坡国立大学理学院生物科学系,14 Science Drive 4,新加坡 117573,新加坡 e 费拉拉大学医学系,意大利费拉拉 f 成都中医药大学嘌呤能信号国际联合研究中心,成都 610075,中国 g 圣保罗大学化学研究所生物化学系, ˜ 巴西圣保罗 h 莱比锡大学鲁道夫-博姆药理学和毒理学研究所,德国莱比锡 i 四川大学华西医院生物治疗国家重点实验室精神卫生中心和精神病学实验室,四川成都 610041 j 四川大学华西医院华西生物医学大数据中心,四川成都 610041 k 成都中医药大学中医压力医学研究所,四川成都 611137 l 成都中医药大学健康与康复学院,四川成都 610075 m 成都中医药大学针灸与时间生物学四川省重点实验室,四川成都 610075