在当今技术驱动的社会中,许多重要的电子、磁性和光子器件的生产规模不断缩小。为了最大限度地提高元件密度并进一步减小尺寸,这些器件也被制造成多层、部分金属化的结构。一个众所周知的例子是微电子器件/集成电路,其结构可以有一层到五层或更多层,厚度可能只有 2-10 微米(图 1)。在该器件的各个层中,重要特征的尺寸范围可以从大约 100 微米到数十纳米。这种材料、厚度和分辨率超出了传统光学显微镜的范围,但对材料科学、微电子学和新兴的纳米科学界来说至关重要。
§ 最先进的 3nm CMOS、70 GHz 电光 § OSFP Type 2A 和 QSFP-DD800 外形尺寸 § 符合标准的 800ZR / 800LR / 800G ZR+(互操作 PCS)模式 § 最高性能 400 / 600 / 800G PCS 传输模式,高达 141GBd § SOA-on-SiP 异构集成,可在 C 波段和 L 波段实现高 Tx 输出功率和可扩展性(OIF 800ZR Tx 输出 A 类)
摘要 — 本工作研究了影响采用转移印刷法制备的Si-GaN单片异质集成Casccode FET击穿电压的因素。这两个因素是Si器件的雪崩击穿电阻和SiN电隔离层的厚度。设计了Si MOSFET和Si横向扩散MOSFET(LDMOSFET)两种器件结构,研究了Si器件的雪崩击穿电阻对Cascode FET击穿特性的影响。分析了SiN电隔离层厚度的影响。最后,单片集成Cascode FET的击穿电压达到了770 V。索引术语 — 单片异质集成;Cascode FET;击穿电压;LDMOS;极化电荷。
(1)对于上表中这些等级的产品,芯片在长期使用条件下可能会对器件造成永久性损坏,从而降低器件的可靠性。天宇微电子不建立
NSI1311 是一款基于 NOVOSENSE 电容隔离技术的高性能隔离放大器,输出与输入分离。该器件的单端输入信号范围为 0.02V 至 2V。NSI1311 的高输入阻抗使其非常适合连接到高压电阻分压器或其他具有高输出电阻的电压信号源。该器件的固定增益为 1,并提供差分模拟输出。低偏移和增益漂移确保整个温度范围内的精度。高共模瞬变抗扰度确保该器件即使在存在高功率开关(例如电机控制应用)的情况下也能提供准确可靠的测量。故障安全功能(缺少 VDD1 检测)简化了系统级设计和诊断。主要特点
NSI1311-Q1 是一款基于 NOVOSENSE 电容隔离技术的高性能隔离放大器,输出与输入分离。该器件的单端输入信号范围为 0.02V 至 2V。NSI1311-Q1 的高输入阻抗使其非常适合连接到高压电阻分压器或其他具有高输出电阻的电压信号源。该器件的固定增益为 1,并提供差分模拟输出。低失调和增益漂移确保整个温度范围内的精度。高共模瞬变抗扰度确保该器件即使在存在高功率开关(例如电机控制应用)的情况下也能提供准确可靠的测量。故障安全功能(缺少 VDD1 检测)简化了系统级设计和诊断。主要特点
触发输入可实现高抗噪性,并且每个隔离通道都有一个由电容性二氧化硅 (SiO 2 ) 绝缘屏障隔开的逻辑输入和输出缓冲器,因此只需要两个 V DD_ 旁路电容即可构建数字信号隔离解决方案。CS817x20/CS817x22 系列器件提供所有可能的单向通道配置,以适应 2 通道设计数字 I/O 应用。CS817x20HS 和 CS817x20LS 具有 2 个通道,可在一个方向上传输数字信号;CS817x22HS 和 CS817x22LS 器件具有一个正向通道和一个反向通道。该系列的所有器件均具有默认输出。当输入未通电或开路时,后缀为 LS 的器件的默认输出为低,后缀为 HS 的器件的默认输出为高,有关每个选项相关后缀的信息,请参阅订购信息。该系列数字隔离器基于简单的隔离架构,可提供可靠的隔离数据路径,启动时无需特殊考虑或初始化。下图显示了 CS817x20 和 CS817x22 单通道的简化框图。CS817x20/CS817x22 系列器件的额定工作温度范围为 -40°C 至 +105°C,采用 8 引脚 SOIC 窄体封装。
在本文中,我们介绍了用于实现 FD-SOI 量子点器件的模拟流程。所提出的流程由一系列模拟组成,从结构的光学光刻制造开始,然后是几何表示和电气行为,最后是量子力学特征。对于我们器件的建模,我们分别使用了 STMicroelectronics 的内部软件 Optical Friendly DEdesign Check (OFDEC)、3D TCAD Sentaurus Process [8] 和 3D Quantum TCAD [9, 10] 模拟工具。本文给出的数值结果表明,我们上一代纳米结构 [11] 中出现的不必要的角落量子点和屏障控制问题现在已经消失。此外,我们的模拟表明,可以通过背栅偏置来控制波函数位置,这预示着 FD-SOI 技术在量子计算应用方面优于其他竞争技术 [12]。
在过去的十几年中,β-Ga 2 O 3 器件特别是肖特基势垒二极管(SBD)发展迅速,性能得到显著提高,目前已接近SiC和GaN的性能[7−12]。目前大面积器件的研究主要集中在与边缘终端的结合[13−16],用于大电流应用的基线器件或称无终端SBD很少研究。我们最近的工作表明,通过界面工程可以大大提高小面积SBD的性能[11],这为大面积器件的发展带来了机会。具有无终端的高性能SBD或许更能体现Ga 2 O 3 SBD的应用潜力。总之,Ga 2 O 3 SBD的应用更为成熟,其应用潜力有待进一步论证。