真正的在线双转换技术可确保出色的输出电压性能,而不管能源干扰和动力的消费者类型。The universal design of the rectifier and inverter allows the UPS to be used in any input and output phase configuration of 1:1, 3:1 or 3:3, as well as 1:3.整个整流器和旁路轨道(分开旁路)的单独进料可提高系统的可靠性,并在级联系统中运行。IGBT整流器最先进的技术提供了非常低的THDI和高功率因数。 自动旁路 - 不间断 - 确保在过热或故障等关键情况下向消费者提供不间断的电源。 通信接口:用于监视和管理UPS操作的USB。 SNMP与NMS型网络管理系统,远程应急电源关闭。 (repo)在发生火灾的情况下,为消费者提供电源的远程断开,LCD控制和监视面板和LED指示器允许诊断PSU的参数和操作模式,并记录事件。 小尺寸 - 适用于标准19英寸架子中安装的模块。 在广泛的负载值中实现了单元的高效率(> 96%),限制了发出的热量,使最终的空间冷却更简单,更便宜。 生态模式大大降低了单元的运营成本并实际上消除了热量排放。 高级软件,使用户能够完全控制设备和电力负载。 高输入功率因数值为0.99限制了电源从电源绘制的电流值。IGBT整流器最先进的技术提供了非常低的THDI和高功率因数。自动旁路 - 不间断 - 确保在过热或故障等关键情况下向消费者提供不间断的电源。通信接口:用于监视和管理UPS操作的USB。SNMP与NMS型网络管理系统,远程应急电源关闭。(repo)在发生火灾的情况下,为消费者提供电源的远程断开,LCD控制和监视面板和LED指示器允许诊断PSU的参数和操作模式,并记录事件。小尺寸 - 适用于标准19英寸架子中安装的模块。在广泛的负载值中实现了单元的高效率(> 96%),限制了发出的热量,使最终的空间冷却更简单,更便宜。生态模式大大降低了单元的运营成本并实际上消除了热量排放。高级软件,使用户能够完全控制设备和电力负载。高输入功率因数值为0.99限制了电源从电源绘制的电流值。操作参数的可配置性 - 标称电压,频率,首选操作模式,通信方法 - 大大扩展了可能的应用程序的范围。高输出功率因数为1.0,允许电源充满活性功率。正常运行中的宽输入电压范围可确保单元的稳定操作无需电池,从而显着延长电池寿命。
符号 名称 单位 BR 构建速度 mm 3 /sd 0 光束腰直径 µm f acq 高速相机采集频率 Hz f osc,meas 测量的熔池振荡频率 Hz f osc,theo 理论预测的熔池振荡频率 Hz FOV 视场 像素 × 像素 / mm × mm fw 波形频率 Hz l 单轨长度 mm lt 层厚度 µm m 重复次数 - M 2 光束质量因数 - P avg 平均激光发射功率 WP bk 激光发射的背景功率 WP max 最大发射功率 WP pk 激光发射的峰值功率 W SR 空间分辨率 µm/像素 t exp CMOS相机的曝光时间 µs t fall 激光下降时间 µs t illumination 照明光的曝光时间 µs t off 激光关闭时间 µs t on 曝光时间 µs t rise 激光上升时间 µs t tot 波形周期 µs V 沉积材料体积 mm 3 δ 占空比 无量纲 ΔP 波形振幅W Λ obs 观察波长 nm Λ process 激光发射波长 nm α 热扩散率 m 2 /s λ 过程的空间波长 µm
因素要求总功率因数范围应为互连设施(连接到 PREPA TC 或分段器)处滞后 0.85 到超前 0.85。无功功率要求是根据电压曲线和无功功率需求为系统运行提供支持所必需的。目的是 PVF 可以在互连设施(连接到 PREPA TC 或分段器)处以平滑连续的方式将无功功率从滞后 0.85 提升到超前 0.85。互连设施(连接到 PREPA TC 或分段器)处的 +/- 0.85 功率因数范围应是动态和连续的。这意味着 PVF 必须能够通过在规定的限制内连续改变电厂的无功输出来响应电力系统电压波动。如果研究表明需要额外的连续动态补偿,则可以扩大先前确定的功率因数动态范围。要求 PVF 无功能力满足 +/- 0.85 功率因数 (PF) 范围,该范围基于 PVF 聚合 MW 输出,即与最大 MW 输出相对应的最大 MVAr 能力。众所周知,正 (+) PF 是 PVF 产生 MVAr 的地方,而负 (-) PF 是 PVF 吸收 MVAr 的地方。最大输出下的 MVAr 能力要求应在 PVF 的整个运行范围内保持,如图 2 所示。MVAr 能力还应在整个互连设施(连接到 PREPA TC 或分段器)电压调节范围内(互连设施额定电压的 95% 至 105%)保持。
功能梯度(其中反应特性在大脑的某个区域内逐渐变化)被认为是大脑的一个关键组织原则。最近使用静息态和自然观察范式的研究表明,这些梯度可以通过“连接眼映射”分析从功能连接模式重建。然而,局部连接模式可能会因数据分析过程中人为引入的空间自相关而混淆,例如空间平滑或坐标空间之间的插值。在这里,我们研究这种混淆是否会产生虚假的连接眼梯度。我们在受试者的功能体积空间中生成了包含随机白噪声的数据集,然后可选地应用空间平滑和/或将数据插值到不同的体积或表面空间。平滑和插值都会引起空间自相关,足以使连接眼映射在许多大脑区域中产生基于体积和表面的局部梯度。此外,这些梯度看起来与从真实自然观看数据中获得的梯度非常相似,尽管在某些情况下,从真实数据和随机数据生成的梯度在统计上存在差异。我们还重建了整个大脑的全局梯度——虽然这些梯度似乎不太容易受到人工空间自相关的影响,但重现先前报告的梯度的能力与分析流程的特定特征密切相关。这些结果表明,通过连接图像映射技术识别的先前报告的梯度可能会受到分析过程中引入的人工空间自相关的干扰,在某些情况下,可能在不同的分析流程中重现效果不佳。这些发现意味着需要谨慎解读连接图像梯度。
tridiagonalization是数值线性代数中的重要技术,它将给定的矩阵转换为三角形形式,其中所有非零元素都局限于主对角线和原发性异基因对角线[1]。这种转换简化了许多矩阵计算,例如解决特征值问题和执行矩阵因数化。在哈密顿系统中,三角法化有助于理解操作员生长的量子动力学[2]和系统的统计特性[3]。对于赫米尔顿的赫米尔顿人,通常是使用兰开斯算法[4]或住户反射[5]来实现的。已知的三角元素(称为兰开斯系数)有效地控制了系统的动力学[6]。在许多情况下,例如对正交多项式的研究,这些元素被称为递归系数,因为它们与正交多项式的序列递归有关[1]。这立即提出了一个关于特征值与兰开斯系数之间关系的重要问题。虽然这似乎是一个简单的问题,但答案通常是不平凡的。但是,在许多情况下,尤其是在随机矩阵理论(RMT)的背景下,特征值和兰开斯系数之间的直接一对一对应关系可能是不需要的。另外,兰开斯系数并非唯一。它们取决于馈送到兰开斯算法的选定初始状态。事实证明,答案是肯定的,并在[7]中解决。因此,考虑统计问题可能更有见识:特征值的分布(例如状态密度(DOS))与兰开斯系数的统计特性之间是否存在相关性?鉴于Hermitian随机矩阵的特征值E I,平均DOSρ(E)与
量子计算机利用量子力学进行计算,使我们能够准备和操纵没有经典等价物的状态。特别是,叠加和纠缠等现象可能使量子计算机在某些应用方面胜过经典计算机。事实上,事实已经证明,随着整数的增加,寻找整数素因数所需的步骤数呈指数增加 [1]。然而,Shor 的因式分解算法可以在多项式时间内对素数进行因式分解。事实上,D-Wave 2000Q 计算机已经取得了令人鼓舞的结果,因为它能够使用 94 个逻辑量子比特门对数字 376289 进行因式分解 [2]。因此,开发新的加密协议至关重要,因为在线交易的安全性假定不可能使用经典算法在合理的时间内对大数进行因式分解。此外,量子计算机有望有效模拟大型原子系统以了解其特性。使用经典计算机,随着原子数量的增长,计算时间呈指数级增长,而在量子计算机上,计算时间呈多项式增长 [3]。实现这些有用的量子算法取决于构建不受噪声影响的精确量子硬件。环境噪声会降低量子比特的相干时间,这意味着量子比特无法长时间保持在所需状态以执行复杂的计算。目前,量子比特的相干时间在 10 微秒的数量级,这不足以解决有趣的问题。因此,减轻噪声和设计耐噪声的量子计算机是必要的。为此,要充分利用量子计算机的功能,就必须表征和了解噪声源以及它们如何影响特定的量子系统。通常,T 1 和 T 2 用于量化噪声。在
• 符合条件的设备必须购买并安装在具有活跃 Spire 帐户的住宅中。 • 安装承包商有资格根据计划获得退款,但必须有客户签署的退款重新分配部分 • 热水器必须具有统一能源因数 (UEF) 评级。 • 如果可编程降温恒温器具有四 (4) 个预编程设置,用于 7 天、5+2 或 5-1-1 天编程功能,或者具有 Wi-Fi 功能或智能恒温器,则符合条件。 • 退款不得超过最终购买价格或自付费用。 • 如果申请人仍然拥有和/或居住在安装了符合条件设备的住宅中,并且拥有活跃的 Spire 帐户,则可以在购买和安装符合条件的设备后一年内获得退款。 • 回扣限额:根据账户号码确定的独立住宅单元,无论是自住物业还是出租物业,在本计划下最多可获得两个供暖系统回扣(炉子/锅炉)、两个热水器回扣或两个组合单元回扣和两个恒温器回扣。多个独立计量住宅单元的业主可获得所有符合条件的天然气节能设备的回扣,但须视计划资金情况而定。计划年度从 10 月 1 日到 9 月 30 日。• 有效安装:回扣仅适用于由您所在县内经认证可安装天然气炉子或热水器的持牌暖通空调或管道承包商进行的安装。除可编程/Wi-Fi 启用/智能恒温器外,自行安装不得根据本计划获得回扣。
1994 年,彼得·肖尔 (Peter Shor) 发现了一种可以有效找到大整数素因数的量子算法 [1]。数学家们长期以来一直对因式分解算法感兴趣,并开发了各种因式分解技术。过去几十年来,这个问题重新引起了人们的兴趣,因为广泛使用的 RSA 密码系统依赖于因式分解的假定难解性。最著名的经典算法是通用数域筛选法,它需要整数大小(即被分解数字的二进制表示中的位数)的亚指数时间。RSA 中用于现代安全级别的参数使用的整数非常大,以至于即使具有出色的计算能力,通用数域筛选法也过于低效。肖尔算法之所以如此引人注目,是因为它可以在量子计算机上以多项式时间运行。量子计算机是利用量子物理特性来存储数据和执行计算的机器。世界各地的研究人员和工程师在构建越来越大的量子计算机方面取得了稳步进展。虽然量子计算机无法全面超越传统计算机,但在某些应用领域,它们可以带来巨大的加速,例如计算化学、人工智能、机器学习、金融建模和药物设计(仅举几例)。目前,量子计算机尚未发展到在这些应用领域超越当今计算机的水平,但在未来几十年内,它们可能会实现这一目标。虽然上述应用将为社会带来积极效益,但 Shor 算法的颠覆性更强。在我们互联的世界中,信息通过使用加密技术得到保护。我们每天都使用互联网、手机、社交网络和云计算进行安全通信和进行金融交易。在幕后,运行我们数字基础设施的协议主要依赖于一些加密原语:公钥加密、数字签名和密钥交换。综合起来,功能
这项研究的目的是研究EESM在电动汽车中的潜在应用。为了实现这一目标,本研究涵盖了一些主题。研究这些主题是为了面对挑战,然后EESM可能普遍存在,并最大程度地将EESM的优势用于电动汽车应用程序。在控制策略中,挑战是正确调整定子和场电流的组合,以便可以实现高功率因数和最小铜损耗。为了解决此问题,提出了控制策略,以便将反应性功耗和总铜损失最小化。使用拟议的策略,沿扭矩速度的信封最大化输出功率,并实现了高效率。在动态电流控制中,由于场绕组和定子绕组之间的磁耦合,一个绕组的电流上升会诱导另一个绕组力(EMF)。这引入了动态电流控制中的干扰。在这项研究中,提出了当前的控制算法来取消诱导的EMF,并减轻了干扰。在机器设计中,有望在相同的EESM设计中实现高启动扭矩和有效的场弱。要意识到这一点,需要满足一些标准。这些标准被得出并集成到设计过程中,包括多目标优化。A 48 V EESM是原型的。在实验验证中,达到10 N·M/L的扭矩密度,包括冷却夹克。基于估计,建立了闭环场电流控制。在现场激发中,采用了非接触式激发技术,从而导致野外绕组的难以接近。要实现封闭环中场电流的精确控制,提出了一种场电流的估计方法。在实验验证中,在2%的误差中跟踪了场电流参考。由于用于现场激发的其他转换器,EESM驱动器的成本增加了。提出了一种提取开关谐波以进行场激发的技术。使用此技术,定子和野外绕组都只能使用一个逆变器供电。
总统和幕僚长(“幕僚长”)发布了一份备忘录,概述了总统在新政府成立之初管理联邦监管程序的计划。为执行该备忘录指示的一项措施,美国能源部(“DOE”)特此暂时推迟其最终规则的生效日期,该规则澄清了 2025 年 1 月 16 日在《联邦公报》上公布的通用灯测试程序(90 FR 4589)。2025 年 1 月 16 日的规则采用了对附录 W、附录 BB 和附录 DD 中通用灯(“GSL”)测试程序的澄清。具体而言,DOE 澄清了以下指示:GSL 不得作为彩色灯进行测试,并且带有不影响光输出的附加组件的灯在测试期间必须关闭。澄清还规定,非集成灯应使用荧光灯镇流器、高强度放电(“HID”)灯镇流器或外部发光二极管(“LED”)驱动器进行测试,这些驱动器应根据兼容性列表和可用性进行选择;并提供了有关启动方法、镇流器因数和灯数量的规格。根据 2025 年 1 月 20 日的参谋长备忘录,能源部暂时将最终规则的生效日期推迟至 2025 年 3 月 21 日。暂时推迟生效日期是必要的,以便能源部官员有机会进一步审查和考虑新法规,这与 2025 年 1 月 20 日的参谋长备忘录一致。在 5 USC 553 适用于此行动的范围内,它免于通知和评论,因为它构成了 5 USC 553(b)(A) 下的程序规则,并且法规不需要对其进行通知或听证。生效日期推迟至 2025 年 3 月 21 日,并不影响本规则的遵守日期,该日期仍为 2025 年 7 月 15 日。但是,能源部正在征求对生效日期进一步推迟的意见,包括这种推迟的影响,以及对该规则提出的法律、事实或政策问题的意见。