某些酉量子系统的某些方面可以通过非厄米有效汉密尔顿量的演化得到很好的描述,例如自发衰变的维格纳-魏斯科普夫理论。相反,任何非厄米汉密尔顿量的演化都可以通过推广的维格纳-魏斯科普夫理论在相应的酉系统 + 环境模型中得到适应。这证明了量子动力学中异常点等新特征的物理相关性,并为研究耦合常数复平面中的许多体系统开辟了道路。在格点场理论的情况下,稀疏性为这些通道提供了在标准化量子硬件上进行有效模拟的希望。因此,我们考虑了与经历非幺正时间演化的晶格场理论的 Suzuki-Lie-Trotter 近似相对应的量子操作,这些操作可能适用于研究具有拓扑项的有限化学势下的自旋或规范模型,以及量子相变(一系列具有符号问题的模型)。我们开发了非厄米量子电路,并在基准(具有复杂纵向磁场的量子一维 Ising 模型)上探索了它们的前景,表明可观测量可以探测 Lee-Yang 边缘奇点。复杂耦合空间中吸引子的发展超过了临界点,这表明近期有噪声硬件的研究潜力。
模拟量子场论在广泛能量范围内的完整动态需要非常大的量子计算资源。然而,对于粒子物理学中的许多可观测量,微扰技术足以准确地模拟理论有效范围内除有限能量范围之外的所有能量。我们证明有效场论 (EFT) 提供了一种有效的机制,可以将传统微扰理论容易计算的高能动态与低能动态区分开来,并展示了如何使用量子算法从第一原理模拟低能 EFT 的动态。作为一个明确的例子,我们计算了在标量场论中存在两个 Wilson 线的时间有序乘积的情况下真空到真空和真空到单粒子跃迁的期望值,这与粒子物理学标准模型的 EFT 中出现的对象密切相关。计算是使用量子计算机的模拟以及使用 IBMQ Manhattan 机器的测量来执行的。
拟议的深空量子实验将能够探索相对论效应很重要的领域的量子信息问题。在本文中,我们认为,将量子信息论适当扩展到相对论领域需要用量子场论 (QFT) 概念来表达所有信息概念。这项任务需要一个可行的 QFT 测量理论。我们提出了构建这种理论的基本问题,特别是与 QFT 基础中长期存在的因果关系和局部性问题有关的问题。最后,我们介绍了正在进行的量子时间概率计划,用于构建一种测量理论,该理论 (i) 原则上适用于任何 QFT,(ii) 允许对所有相关的因果关系和局部性问题进行第一性原理研究,以及 (iii) 它可以直接应用于当前感兴趣的实验。
摘要。当今的量子计算机提供了对高能物理激发的量子场论散射过程进行实时计算的可能性。为了遵循已建立的在欧几里得时间计算静态属性的成功路线图,开发新的算法来处理当前嘈杂的中尺度量子 (NISQ) 设备的局限性并建立使用不同设备取得的进展的定量指标至关重要。在本文中,我们报告了这些方向的最新进展。我们表明,Trotter 误差的非线性方面使我们能够采取比低阶分析建议的更大的步骤。这对于使用当今的 NISQ 技术达到物理相关的时间尺度至关重要。我们建议使用一个指数来平均准确计算的 Trotter 站点占用演化与 NISQ 机器上的实际测量值之间的差异的绝对值 (G 指数) 作为衡量标准,以比较从不同硬件平台获得的结果。我们使用具有四个站点的一维空间横向 Ising 模型,将此度量应用于多个硬件平台。我们研究了包括读出缓解和 Richardson 外推在内的结果,并表明基于对 Trotter 步长修改的分析,缓解测量非常有效。我们讨论了 Trotter 步长程序中的这一进步如何改善量子计算物理散射结果,以及如何将这一技术进步应用于其他机器和噪声缓解方法。
𝑚 ത 𝜓𝑒 𝑖𝛾 01 𝛼 𝜓= 𝑀 ത 𝜓 + 𝜓 − + hc 该理论具有 𝑈1 𝑉 对称性 𝜓→𝑈𝜓 。 • 𝑀≠0 :具有唯一基态的间隙。 • 𝑀= 0 :余维数为 2 的无间隙魔鬼点。 • 𝑀= 0 :对于 𝑈1 𝐴 −𝑈1 𝑉 出现混合异常,但对于 𝑀≠0 则不存在 𝑈1 𝐴 问:我们可以添加相互作用来使系统间隙化,同时仅保留 𝑈1 𝑉 对称性吗? (否。 Diabolic point 受 Thouless 泵不变量保护。)问:是否存在连续依赖于参数的平凡间隙界面族?(否,Berry 相的体边界对应示例)
受信息理论与高能物理之间日益密切的联系(特别是在 AdS/CFT 对应关系的背景下)的启发,我们探索了与各种简单系统相关的信息几何。通过研究它们的 Fisher 度量,我们得出了一些普遍的教训,这些教训可能对信息几何在全息术中的应用具有重要意义。我们首先证明所研究的物理理论的对称性在最终的几何中起着重要作用,而 AdS 度量的出现是一个相对普遍的特征。然后,我们通过研究经典 2d Ising 模型和相应的 1d 自由费米子理论的几何形状,研究 Fisher 度量保留了哪些有关底层理论物理的信息,并发现曲率在两侧的相变处恰好发散。我们以相干自由费米子态为例,讨论了将度量置于理论空间与状态空间所产生的差异。我们将后者与相干自由玻色子态空间中的度量进行比较,并表明在这两种情况下,度量都是由相应密度矩阵的对称性决定的。我们还澄清了文献中关于度量和非度量连接的不同平坦度概念的一些误解,这对如何解释几何曲率有所影响。我们的结果表明,一般来说,在将某些模型中产生的 AdS 几何与 AdS / CFT 对应联系起来时需要谨慎,并寻求为这一激动人心的领域的未来发展提供一套有用的指导方针。
凝聚态理论中的张量网络算法 [1-5] 最近在量子引力领域产生了巨大影响,成为研究普朗克尺度时空性质及其全息特性的有力新工具。在 AdS/CFT 框架中,Ryu-Takayanagi 公式与几何/纠缠对应 [6-9] 相结合,导致了一种新的全息对偶构造方法,如今由 AdS/MERA 猜想 [10] 进一步捕获,该猜想建议将量子多体边界态的辅助张量网络分解的几何解释为对偶体几何的表示 [11,12]。张量网络在此意义上的使用产生了一种新的构造方法 [13],其中某些全息理论的关键纠缠特征可以通过张量网络状态类来捕获。在量子引力的非微扰方法中,包括圈量子引力(LQG)和自旋泡沫模型[14-17]及其在群场论(GFT)方面的推广[18-20],前几何量子自由度被编码在随机组合自旋网络结构中,用SU(2)的不可约表示标记,并在每个节点上赋予规范对称性。此类自旋网络态可理解为特殊的对称张量网络[21,22],张量网络技术已在量子引力领域得到广泛应用[23-26]。在半经典层面上,离散时空和几何与此类结构自然相关,其量子动力学与(非交换的)离散引力路径积分相关[27-30]。悬而未决的问题是展示连续时空几何和广义相对论动力学如何从具有相同前几何自由度的全量子动力学中诞生,这实际上将量子时空描述为一种特殊的量子多体系统[31-33]。从这个意义上说,张量网络技术已广泛应用于圈量子引力背景下的自旋泡沫重正化问题[23-26],以及用于分析自旋网络纠缠结构的定量工具,并寻找具有与半经典解释中的良好几何兼容的关联和纠缠特性的自旋网络态类。最近,张量网络表示方案已被用于提取自旋网络态非局域纠缠结构的信息,并在背景独立的情况下理解局域规范结构对全息纠缠的普适标度特性的影响[34]。沿着这条思路,一些作者在 [ 35 ] 中定义了随机张量网络和群场论 (GFT) 状态之间的精确词典,并以此为基础在非微扰量子引力背景下首次推导了 Ryu-Takayanagi 公式 [ 6 ]。该字典还在对 GFT 状态进行不同限制的情况下,暗示了 LQG 自旋网络状态与张量网络之间的对应关系,以及随机张量模型 [ 36 ] 与张量网络之间的对应关系。总结上述字典,GFT 状态定义了具有场论公式和量子动力学的(广义)规范对称张量网络。GFT 张量的场论性质提供了一种自然的随机解释,尽管它对应的概率测度通常与标准随机张量网络模型的概率测度不同。此外,GFT 网络的主要特征——晶格拓扑、张量序、键维数——不是固定的,而是由所考虑的特定 GFT 模型动态诱导的。从这个意义上说,GFT 定义了通常张量网络的广义。因此,GFT 定义的张量网络的关联函数将在很大程度上取决于模型的选择。如 [ 35 ] 所示,标准随机张量网络模型与 GFT 张量网络之间的相似性在非相互作用 GFT 理论的最简单情况下尤其明显,其中理论的传播子诱导最大纠缠
我们并不了解所有能量无限高(或距离无限小)内的物理学。因此,我们所有的理论都是有效的低能(或大距离)理论(万物理论除外,如果这样的东西存在的话)。在高能量尺度 M(和短距离尺度 1 / M )下,有效理论不成立。我们想要描述光粒子(质量 mi ≪ M )及其在低能量下的相互作用,即特征动量 pi ≪ M(或等效地,在大距离 ≫ 1 / M )。为此,我们构造了一个包含光场的有效拉格朗日量。小距离 ≲ 1 / M 下的物理学会产生这些场的局部相互作用。拉格朗日量包含所有可能的算子(我们的理论的对称性允许)。维度 n + 4 的算子的系数与 1 / M n 成比例。如果 M 远大于我们感兴趣的能量,我们只能保留可重整化项(维度 4),也许还要进行一两次幂校正。有关有效场论的更多信息,请参阅教科书 [ 1 ]。