某些酉量子系统的某些方面可以通过非厄米有效汉密尔顿量的演化得到很好的描述,例如自发衰变的维格纳-魏斯科普夫理论。相反,任何非厄米汉密尔顿量的演化都可以通过推广的维格纳-魏斯科普夫理论在相应的酉系统 + 环境模型中得到适应。这证明了量子动力学中异常点等新特征的物理相关性,并为研究耦合常数复平面中的许多体系统开辟了道路。在格点场理论的情况下,稀疏性为这些通道提供了在标准化量子硬件上进行有效模拟的希望。因此,我们考虑了与经历非幺正时间演化的晶格场理论的 Suzuki-Lie-Trotter 近似相对应的量子操作,这些操作可能适用于研究具有拓扑项的有限化学势下的自旋或规范模型,以及量子相变(一系列具有符号问题的模型)。我们开发了非厄米量子电路,并在基准(具有复杂纵向磁场的量子一维 Ising 模型)上探索了它们的前景,表明可观测量可以探测 Lee-Yang 边缘奇点。复杂耦合空间中吸引子的发展超过了临界点,这表明近期有噪声硬件的研究潜力。
主要关键词