对于直接实现酉门的传统量子计算机来说,模拟描述非酉演化后量子系统真实相互作用的一般量子过程是一项挑战。我们分析了有前途的方法的复杂性,例如 Sz.-Nagy 膨胀和酉函数的线性组合,它们可以通过非酉算子的概率实现来模拟开放系统,这需要多次调用编码和状态准备预言机。我们提出了一种量子二酉分解 (TUD) 算法,使用量子奇异值变换算法将具有非零奇异值的 a 维算子 A 分解为 A = ( U 1 + U 2 ) / 2,避免了经典的昂贵的奇异值分解 (SVD),其时间开销为 O(d3)。这两个酉函数可以确定性地实现,因此每个酉函数只需要调用一次状态准备预言机。对编码预言机的调用也可以显著减少,但测量误差可以接受。由于TUD方法可以将非幺正算子实现为仅两个幺正算子,因此它在线性代数和量子机器学习中也有潜在的应用。
主要关键词