表皮生长因子受体(EGFR)突变的发现极大地改变了晚期非小细胞肺癌(NSCLC)患者的临床前景。与最常见的EGFR突变(例如外显子19缺失(del19)和外显子21 L858R点突变)不同,EGFR外显子20插入突变(EGFR ex20ins)是一种罕见的EGFR突变。由于其结构特异性,其对传统的表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)表现出原发性耐药,导致患者总体生存预后不佳。近年来,针对EGFR ex20ins的新药研发不断取得进展,为该患者群体的治疗带来了新的希望。对此,我们对EGFR ex20ins的分子特征、诊断进展、治疗现状进行了系统综述。总结了相关药物研发和临床研究的最新数据,旨在为临床诊断、治疗及药物研发提供参考。
具有 SLICK 单倍型的牛具有光滑且短的毛发特征,SLICK 单倍型的主要优点之一是其在改善牛的体温调节方面发挥的作用,尤其是在炎热潮湿的气候下。导致牛出现光滑表型的致病变异主要位于催乳素受体基因的第 11 个外显子中,但应注意的是,并非在此区域发现的所有变异都会导致光滑表型(Porto-Neto 等人,Front. Genet.,9:57,2018)。尽管如此,这些单个等位基因对于 CRISPR 实验中的引导设计问题仍然至关重要,特别是那些旨在敲除或修改催乳素受体基因的实验。这些单个等位基因的鉴定有助于更全面地了解该区域的遗传变异,并可帮助研究人员为他们的实验设计更精确、更有效的引导 RNA。因此,即使不直接导致光滑表型的等位基因,在增进我们对与这一基本特征有关的潜在遗传机制的了解方面也具有重要价值。本研究旨在评估体外受精 (IVF) Bos taurus x Bos indicus 杂交牛胚胎的基因组序列,特别关注 PRLR 区域。单独收集囊胚,并使用两步孵育法用蛋白酶 K (1,5ug/uL) 裂解缓冲液进行 DNA 提取。随后,重复进行 PCR 扩增,并对 PCR 片段进行 Sanger 测序。使用 Unipro Ugene 软件进行序列分析 (Okonechnikov K., et al. Bioinformatics, 28 (8):1166-7, 2012)。共分析了 15 个样本,发现 33.3% (5/15) 的样本在位置 39099463 处出现单个突变 (C>T),导致丝氨酸被替换为终止密码子,这是之前未曾报道过的。此外,在一个位置很近的区域中发现了一对错义突变,60% 的样本在位置 39099322 处出现精氨酸被替换为亮氨酸的突变 (G>T),而所有样本在位置 39099190 处出现丝氨酸被替换为亮氨酸的突变 (C>T)。最后,在位置 39099368 处发现了一个静默突变,可能导致 60% 的样本中的胞嘧啶被胸腺嘧啶替换,在这两种情况下都会导致酪氨酸的合成。根据初步分析的结果,可以推断该区域具有较高的遗传变异潜力。因此,建议在设计旨在引入插入/缺失以促进光滑表型的向导 RNA 之前,检查杂交动物的目标基因组区域并与 Bos taurus 进行比较。总之,本研究的结果为了解牛 PRLR 区域的遗传变异提供了宝贵的见解,这可能会影响基因编辑效率。
目的:性发育障碍 (DSD) 是指染色体、性腺和解剖性别发育不典型的先天性疾病。尽管进行了广泛的实验室和影像学检查,但超过 50% 的患者仍无法查明 DSD 的病因。方法:我们通过全外显子组测序 (WES) 对 9 名平均年龄为 10 岁的患者进行了 DSD 病因评估,这些患者通过激素、影像学和候选基因等多种方法进行了广泛的评估,但未能确定病因。结果:8 名 46,XY 患者出生时患有小阴茎、隐睾和尿道下裂,46,XX 患者患有大阴唇融合。在 7 名患者 (78%) 中,发现了 RXFP2、HSD17B3、WT1、BMP4、POR、CHD7 和 SIN3A 的致病变异。在两名患者中未发现致病变异。之前报道了三种基因突变,它们具有不同的表型:一名 11 岁男孩携带新的 BMP4 从头变异;此类变异主要与小眼畸形有关,少数情况下与男性外生殖器异常有关,这支持了 BMP4 在男性外生殖器发育中的作用;一名 12 岁男孩携带已知的 RXFP2 致病变异,该变异编码胰岛素样 3 激素受体,之前在患有隐睾的成年男性中也有报道;一名患有综合征性 DSD 的 8 岁男孩携带 SIN3A 从头缺失。结论:我们在 78% 的患者中发现了 DSD 的分子病因,这表明 WES 在早期 DSD 诊断和管理中发挥着重要作用,并强调了在婴儿早期快速进行分子诊断对于抚养性别决策的重要性。
在基因组,外部和小组测序数据集中诊断出遗漏的脊柱肌肉萎缩病例本·韦斯堡(Ben Weisburd),1,2,* Rakshya Sharma,1,3 Villem Pata,4,5 Tiia Reimand,4,6 Vijay S. Ganesh,1,2,7,7,7,7,8 Christina Austin-Austin-tsei-emiDe,1,8 emiyl emwa suow om emolow om emrouwa os。 O'Heir, 1,8 Melanie O'Leary, 1 Lynn Pais, 1,8 Seth A. Stafki, 9 Audrey L. Daugherty, 9 Chiara Folland, 26 Stojan Peri ć , 10,11 Nagia Fahmy, 12 Bjarne Udd, 13 Magda Horakova, 14,15 Anna Łusakowska, 16 Rajanna Manoj, 17 Atchayaram Nalini, 17 Veronika Karcagi, 18 Kiran Polavarapu, 19 Hanns Lochmüller, 19,20,21 Rita Horvath, 22 Carsten G. Bönnemann, 23 Sandra Donkervoort, 23 Göknur Halilo ğ lu, 23,24 , Ozlem Herguner, 25 Peter B. Kang, 9 Gianina Ravenscroft,26,27 Nigel Laing,26,27 Hamish S.Scott,28AnaTöpf,29 Volker Straub,29 Sander Pajusalu,4,6 Katrin rinap,4,6 Grace Tiao,1 Heidi L. Rehm,1,2 Anne O'Donnell-Lurururiia-Lururiaia Lururiaia 1,2,8,* * <
一个令人兴奋的领域是“外显子跳跃疗法”的发展。在我们的细胞中,基因被复制到 RNA 配方中,告诉细胞如何制造特定的蛋白质。这些 RNA 配方由称为“外显子”的构建块组成,它们有点像配方中的单独句子。基因拼写错误通常发生在特定的外显子中。如果可以移除(跳过)包含此拼写错误的外显子而不会扰乱整个蛋白质配方,那么会丢失一小部分蛋白质(由跳过的外显子提供的配方部分),但大多数蛋白质仍会以正常方式产生。最终会得到一种大小接近正常但缺少一小部分的蛋白质。正如 Oates 所说:“对于许多疾病来说,这比因拼写错误而导致蛋白质几乎不产生或完全不产生蛋白质要好得多。”
Sorich (2015) 发表了一项系统评价和荟萃分析,纳入了 9 项 RCT,包括 5948 名转移性结直肠癌患者,评估了 KRAS 外显子 2 变异和新 RAS 变异,新 RAS 变异定义为 KRAS 外显子 3 和 4 以及 NRAS 外显子 2、3 和 4 的变异。[17] NRAS 外显子 2、3 和 4 变异的患病率为 0.5% 至 4.8%,与 KRAS 外显子 3 和 4 变异的患病率相似,后者在肿瘤中的患病率为 4.3% 至 6.7%。汇总数据表明,与具有这些变异的肿瘤相比,使用抗 EGFR 单克隆抗体 (mAb) 治疗没有 KRAS 外显子 2 变异或新 RAS 变异的肿瘤具有明显更好的 PFS (p<0.001) 和 OS (p=0.008)。此外,与新 RAS 变异相比,具有 KRAS 外显子 2 变异的肿瘤的 PFS 或 OS 没有差异。这些结果在不同的抗 EGFR mAb 药物、治疗方法和化疗之间是一致的。在具有 KRAS 外显子 2 变异或新 RAS 变异的肿瘤中使用抗 EGFR mAb 药物没有观察到 PFS 或 OS 益处 (p>0.05)。根据这些结果,作者得出结论,大约 53% 的转移性结直肠肿瘤(约 42% 具有 KRAS 外显子 2,约 11% 具有新的 RAS 变体)不太可能对抗 EGFR mAb 疗法产生积极反应。这项汇总数据分析的结果表明,NRAS 变体结果可用于指导转移性结直肠肿瘤患者的治疗决策,因为具有 NRAS 变体的患者不太可能从抗 EGFR mAb 疗法中受益。
对有或没有神经系统疾病家族史的人进行基因检测可以确定他们是否携带已知的致病基因之一。遗传咨询可以帮助人们理解检测的目的以及结果可能意味着什么。用于诊断或治疗的基因检测应在经过临床检测认证的实验室中进行。临床检测可以寻找特定基因或多个基因区域中的致病突变。这种检测可能使用针对特定类型疾病的一组基因(例如婴儿发病型癫痫)或称为全外显子组测序的测试。外显子组是基因组中由外显子组成的部分,外显子编码蛋白质。现在全基因组测序也用于某些情况。外显子组和基因组测序可能需要几个月的时间来分析。临床医生和研究人员还会对全外显子组或全基因组进行测序,以发现导致神经系统疾病的新基因。
25摘要:哺乳动物心脏肌钙蛋白I(CTNI)包含一个高度保守的N末端延伸,含有蛋白激酶A靶标(SER 23/24),在β-肾上腺素能刺激期间被磷酸化以增加心肌细胞呈现速率。在这里,我们表明,tnni3的Exon 3编码外显子3的Ser ser和痣多次被伪造,以模拟SER 23/24磷酸化,而无需肾上腺素能刺激,促进了30种异常高的静息心率的进化(〜1000次降低了1000次BEATS -〜1000 BEATS min -1 -1 -1 -1)。我们进一步揭示了远距离相关的BAT家族中的替代外显子3剪接,并且外显子3-和外显子3 + CTNI同工型都掺入心脏肌纤维中。最后,人类TNNI3的外显子3被证明具有相对较低的剪接强度评分,提供了一种进化知情的策略,可以切除该外显子以改善心力衰竭期间的舒张功能。35
罗氏将与 Ascidian Therapeutics 合作,发现和开发针对神经系统疾病的新型 RNA 外显子编辑疗法,该交易价值可能高达 18 亿美元。这家总部位于马萨诸塞州波士顿的生物技术公司正在开创一种旨在重写外显子的新方法,外显子是 RNA 的编码部分,它们被拼接在一起作为信使 RNA,然后翻译成蛋白质。外显子的突变会导致 Ascidian 想要针对的功能失调的致病蛋白质。Ascidian 相信其平台可以为现有基因治疗和基因编辑技术无法解决的疾病创造疗法。许多基因的大小大且突变变异性高,使它们超出了现有基因编辑和碱基编辑方法的范围。其重点是设计和开发可以重写数千个 RNA 外显子的 RNA 外显子编辑疗法。该技术可以使其能够针对大基因和突变变异性高的基因,同时保持天然基因表达模式和水平。该公司表示,其目标是提供持久的一次性基因治疗,同时“大幅降低”与 DNA 编辑和操作相关的风险。外显子编辑分子足够小,可以装入 AAV 或其他病毒或非病毒载体,包括脂质纳米颗粒,并且这种疗法应该在“正确的时间、正确的细胞中”产生全长、功能性的蛋白质。
蛋白质。我们在此报告了通过同源定向修复在患者造血干细胞/祖细胞 (HSPC) 中进行基因校正,使用 CRISPR/Cas9 将腺相关病毒供体的 CYBB 外显子 1-13 或 2-13 cDNA 靶向插入内源性 CYBB 外显子 1 或外显子 2 位点。外显子 1-13 cDNA 的靶向插入不会恢复生理 gp91 phox 水平,这与 CYBB 表达对内含子 1 的要求一致。然而,外显子 2-13 cDNA 的插入完全恢复了吞噬细胞分化时 gp91 phox 和 ROS 的产生。添加土拨鼠肝炎病毒转录后调控元件不会进一步增强外显子 2-13 校正细胞中的 gp91 phox 表达,表明保留内含子 1 足以实现最佳 CYBB 表达。使用 i53 mRNA 暂时抑制非同源末端连接,靶向校正增加了约 1.5 倍。在 NSG 小鼠中植入后,校正后的 HSPC 产生了吞噬细胞,并恢复了 gp91 phox 和 ROS 的产生。我们的研究结果证明了