引言与连接上游 5′ 剪接位点 (ss) 和下游 3′ ss 的经典剪接不同,反向剪接将下游 5′ 反向剪接位点 (bss) 与上游 3′ bss 连接,产生共价闭合的环状 RNA (circRNA) [1-7]。尽管反向剪接的加工方式不利,但它由与经典剪接相同的剪接体机制催化 [8-10],表明它们之间存在直接竞争 [11]。此外,反向剪接也受顺式元件和反式因子的严格调控 [10,12-16],导致 circRNA 在所检测的广泛细胞系、组织和物种中呈现时空表达 [17-25]。越来越多的证据表明,circRNA 表达失调与人类疾病有关,如癌症 [ 26 – 29 ]、系统性红斑狼疮 [ 30 ] 和神经元变性 [ 31 , 32 ],表明它们在生理和病理条件下都发挥着潜在作用 [ 1 , 2 , 5 ]。从机制上讲,大多数 circRNA 位于细胞质中,有些被发现充当 miRNA 或蛋白质的诱饵 [ 12 , 15 , 19 , 22 , 30 , 32 , 33 ]。尽管如此,大多数 circRNA 的生物学意义仍未被充分探索,部分原因是其功能研究方法有限,例如 DNA 水平上的 circRNA 敲除 (KO)。例如,CRISPR/Cas9 基因组编辑去除了
在存在原间隔区相邻基序 (PAM) 序列的情况下,ABE 可用于将猪基因组中特定位置的 A·T 转换为 G·C,从而模拟单碱基突变引起的遗传疾病(Anzalone 等人,2020 年;Porto 等人,2020 年)。然而,基因敲除需要将起始密码子 ATG 转换为 GTG(或将 ATG 转换为
1 法国格勒诺布尔阿尔卑斯大学先进生物科学研究所、INSERM U1209、CNRS UMR 5309、38000 格勒诺布尔、不孕症遗传学表观遗传学和治疗团队; EXT-CCazin@chu-grenoble.fr(抄送); corinne.loeuillet@univ-grenoble-alpes.fr (法语); christophe.arnoult@univ-grenoble-alpes.fr(加拿大); PRay@chu-grenoble.fr (PFR) 2 UM GI-DPI, CHU Grenoble Alpes, 38000 格勒诺布尔, 法国; ilordey@chu-grenoble.fr 3 日内瓦大学医学院遗传医学与发展系,CH-1211 Genève 4,瑞士; Yasmine.NEIRIJNCK@univ-cotedazur.fr(YN); Lydia.Wehrli@unige.ch (LW); Francoise.Kuhne@unige.ch (FK); Serge.Nef@unige.ch (SN) 4 突尼斯医疗援助中心,Polyclinique les Jasmins,Centre Urbain Nord,突尼斯 1003; fourati_selima@yahoo.fr(SFBM); aminbouker@gmail.com (AB); raoudha.zouari@cliniquelesjasmins.com.tn (RZ) 5 TIMC-IMAG,CNRS 和格勒诺布尔阿尔卑斯大学,38000 格勒诺布尔,法国; Nicolas.Thierry-Mieg@univ-grenoble-alpes.fr * 通信地址:ZEKherraf@chu-grenoble.fr;电话:+33-(0)4-7676-8303
摘要:具有致敏致癌驱动突变的非小细胞肺癌 (NSCLC) 患者已从靶向治疗中获得了临床益处。EGFR 突变组成性激活信号通路,导致促生存和抗凋亡信号。经典的致敏 EGFR 突变,例如外显子 19 缺失和外显子 21 L858R 点突变,对酪氨酸激酶抑制剂 (TKI) 反应良好。另一方面,在 4-12% 的 EGFR 突变 NSCLC 中观察到 EGFR 外显子 20 同框插入,并且对 TKI 靶向治疗具有耐药性。2021 年 5 月,美国联邦药品管理局 (FDA) 加速批准了阿米凡他单抗 (Rybrevant) 用于接受铂类化疗后 EGFR 外显子 20 插入突变的局部晚期或转移性 NSCLC 成人患者。在这里,我们讨论阿米凡他单抗的特性、临床试验结果以及 EGFR 外显子 20 插入突变 NSCLC 患者的治疗。关键词:阿米凡他单抗、表皮生长因子受体、间充质上皮转化因子、MET、非小细胞肺癌、酪氨酸激酶抑制剂
摘要:Virtus项目旨在创建一个虚拟电厂(VPP)的原型,该原型协调电力系统的分布式能源(DERS),并为系统运营商和电力市场的各个参与者提供服务,并特别关注工业部门代理商。VPP将能够管理大量的DER,并模拟现实的工厂,组件和市场数据,以研究不同的运营条件以及平衡市场(BM)政策变化的未来影响。本文描述了项目的目的,提出的框架的一般结构及其优化和仿真模块。然后,我们评估优化模块的可扩展性,旨在为系统操作员提供最大可能的功能,从而利用VPP的仿真模块。
pontocerebellar促发育不足序列序列分析和外显子级缺失/重复测试19个基因面板基因列表ampd2,cask,chmp1a*,exosc3,exosc3,ophn1,rars2,rars2,rars2,rars2,reln,reln,reln,sepsecs,sepsecs,sepsecs,sepsecs,sepsecs,tsen2,tsen2,tsen15,tsen1111a11a11a11a11a11a, TUBB2B,TUBB3,VLDLR,VPS53,VRK1 *只能检测到CHMP1A和TUBA1A基因临床特征Pontocerebellar低位症(PCH)的大删除/复制,这是一种罕见的疾病,是一种罕见的疾病,影响了ventral Pons and Cerebellum,两种结构,在两个结构中都在linea中发挥了相同的发育。PCH在大多数情况下都有胎儿发作,并且似乎是由于发育缺陷和小脑的进行性萎缩的结合而引起的。1-4由于子宫内发作和PON的参与,PCH可以与其他异常小脑发育障碍区分开,这些异常是由于产前感染,血管异常,退行性疾病,退化性疾病,或代谢异常而引起的。 PCH有三种主要类型。 1型PCH是一种婴儿致死型,会影响脊髓中的前角细胞,并引起脊柱肌肉萎缩,肌张力低下,染色和小头畸形。 2型PCH显示了脊柱运动神经元的保留,其特征是发育延迟,语言障碍,吞咽困难,进行性小头畸形和肌张力障碍或唱片。 在2型PCH中,还可以看到滋补性持续性癫痫发作,呼吸异常,低血压,共济失调和眼动异常。 4型PCH与2型PCH相似但更严重,受影响的儿童患有染色,严重的广泛性克隆和呼吸衰竭,导致新生儿时期死亡。1-4由于子宫内发作和PON的参与,PCH可以与其他异常小脑发育障碍区分开,这些异常是由于产前感染,血管异常,退行性疾病,退化性疾病,或代谢异常而引起的。PCH有三种主要类型。1型PCH是一种婴儿致死型,会影响脊髓中的前角细胞,并引起脊柱肌肉萎缩,肌张力低下,染色和小头畸形。2型PCH显示了脊柱运动神经元的保留,其特征是发育延迟,语言障碍,吞咽困难,进行性小头畸形和肌张力障碍或唱片。滋补性持续性癫痫发作,呼吸异常,低血压,共济失调和眼动异常。4型PCH与2型PCH相似但更严重,受影响的儿童患有染色,严重的广泛性克隆和呼吸衰竭,导致新生儿时期死亡。其他形式的PCH极为罕见,除了小脑发育不全外,还包括可变的临床体征。在PCH的鉴别诊断中,经常考虑小脑发育不全疾病。这些可能包括X连接的小脑发育不全疾病,而无需一致的POS参与,这也可以伴随着智力障碍(XLID),肌畸形,小头畸形和癫痫病。此外,常染色体显性微管蛋白相关的疾病存在多种脑畸形,包括小脑发育不全,是由异常的神经元迁移,分化和轴突指导引起的。5-7遗传学尚不清楚PCH的发生率。 这组疾病表现为常染色体主导,隐性或X连接的主要特征。 神经放射学表现,发病年龄和随附的临床体征通常足够不同,以允许PCH类型的临床分类并与分子诊断相关。 1-4 PCH尽管存在遗传异质性,但通常表现为真正的门德尔特征,但目前的文献表明,由于某些基因中的致病变异,可以看到临床异质性。 GenEDX的pontocerebellar发育不全面板包括对18个基因的测序和缺失/重复分析。 这些基因编码各种蛋白质,包括涉及微管组装的蛋白质(TUBB基因),转移RNA剪接蛋白复合物(TSEN基因)的成分以及负责所有线粒体蛋白(RARS2)翻译的转移RNA合成酶。 在Illumina平台上同时对富集的目标同时测序。5-7遗传学尚不清楚PCH的发生率。这组疾病表现为常染色体主导,隐性或X连接的主要特征。神经放射学表现,发病年龄和随附的临床体征通常足够不同,以允许PCH类型的临床分类并与分子诊断相关。1-4 PCH尽管存在遗传异质性,但通常表现为真正的门德尔特征,但目前的文献表明,由于某些基因中的致病变异,可以看到临床异质性。GenEDX的pontocerebellar发育不全面板包括对18个基因的测序和缺失/重复分析。这些基因编码各种蛋白质,包括涉及微管组装的蛋白质(TUBB基因),转移RNA剪接蛋白复合物(TSEN基因)的成分以及负责所有线粒体蛋白(RARS2)翻译的转移RNA合成酶。在Illumina平台上同时对富集的目标同时测序。使用来自提交样品的基因组DNA,该面板上基因的完整编码区域和剪接位点连接的测试方法富含GenEDX开发的专有靶向捕获系统,用于使用CNV调用(NGS-CNV)进行下一代测序。双向序列读取是基于NCBI refSEQ转录本的参考序列组装并对齐的,并且人类基因组构建了GRCH37/UCSC HG19。基因特异性过滤后,分析数据以识别涉及编码
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2021年8月6日发布。 https://doi.org/10.1101/2021.08.05.455347 doi:biorxiv Preprint
摘要 背景 我们采用多模式方法,包括详细表型分析、全外显子组测序 (WES) 和候选基因过滤器,对三级神经病学中心转诊的个体进行罕见神经系统疾病诊断。方法 使用候选基因过滤器和严格的算法对 66 名患有神经遗传疾病的个体进行 WES,以评估序列变异。使用计算机预测工具、家族分离分析、先前的疾病关联出版物和相关生物学检测来解释致病或可能致病的错义变异。结果 39% (n=26) 的病例实现了分子诊断,其中包括 59% 的儿童期发病病例和 27% 的晚发型病例。总体而言,37% (10/27) 的肌病、41% (9/22) 的神经病变、22% (2/9) 的 MND 和 63% (5/8) 的复杂表型得到了基因诊断。已鉴定出 27 种与疾病相关的变异,包括 FBXO38、LAMA2、MFN2、MYH7、PNPLA6、SH3TC2 和 SPTLC1 中的 10 种新变异。单核苷酸变异 (n=10) 影响功能域内的保守残基和先前鉴定的突变热点。已确定的致病变异 (n=16) 表现出非典型特征,例如成人多聚葡聚糖体病的视神经病变、脑腱黄瘤病的面部畸形和骨骼异常、先天性肌无力综合征 10 的类固醇反应性虚弱。诊断出可能可治疗的罕见疾病,改善了部分患者的生活质量。结论 整合深度表型分析、基因过滤算法和生物检测提高了外显子组测序的诊断产量,发现了新的致病变异,并扩展了门诊环境中难以诊断的罕见神经遗传疾病的表型。
为了探测靶向治疗的肿瘤的基因组谱,对组织标本和相关的血液样本进行了NGS分析,并确定了Met Exon 14跳过突变(C.3026_3028+11DEL)(图1B和1C)。未发现其他驱动基因变体。突变等位基因频率为33.87%。同样,组织样品的放大片段小于18S rRNA,与Met Exon 14跳过H569细胞系相似,进一步证实了Met Exon 14跳过的出现(图1D)。根据这些发现,患者每天两次开始用250毫克Crizotinib治疗。最值得注意的是,经过一个月的治疗后成像显示肿瘤显着减少。他的肺肿瘤的大小为1.0 cm×0.8 ccm×0.4 cm,符合recist的部分反应标准(-98%,图1E)。这持续了4个月,直到他经历了与疾病无关的死亡。
抽象背景:DMD基因中的框架突变导致Duchenne肌肉营养不良(DMD),这是一种神经肌肉进行性遗传疾病。在DMD患者中,缺乏肌营养不良蛋白会导致进行性肌肉变性,从而导致心脏和呼吸道衰竭导致过早死亡。目前,尚无对DMD的某些治疗方法。dmd基因是2.2巨型碱基对的人类基因组中最大的基因,并包含79个外显子。在过去的几年中,基因疗法被认为是一种有希望的DMD治疗,在各种基因编辑技术中,CRISPR/CAS9系统被证明更加精确和可靠。这项研究的目的是评估使用一对SGRNA敲除外显子48的可能性。方法:一对指导RNA(GRNA)设计用于切割DMD基因,并诱导外显子48的缺失。将GRNA转接为HEK-293细胞系,然后通过PCR分析基因组DNA中的DELENEC,然后通过PCR和随后的Sanger测序分析。结果:外显子48被成功删除,因此外显子47连接到外显子49。结论:此结果表明CRISPR/CAS9系统可用于精确编辑DMD基因。关键字:CRISPR/CAS9,肌营养不良,基因编辑,肌肉营养不良简介