自组装单分子膜 (SAM) 广泛应用于有机场效应晶体管,以改变栅极氧化物的表面能、表面粗糙度、薄膜生长动力学和电表面电位,从而控制器件的工作电压。本研究使用 n 型多晶小分子半导体材料 N,N′-二辛基-3,4,9,10-苝二甲酰亚胺 (PTCDI-C8),比较了氨基官能化的 SAM 分子与纯烷基硅烷 SAMS 对有机场效应晶体管电性能的影响。为了了解氨基对电子的影响,系统地研究了含氨基官能团的数量和 SAM 分子长度的影响。虽然之前已经研究过氨基官能化的 SAM 材料,但这项研究首次能够揭示用极性氨基硅烷材料处理栅极氧化物时发生的掺杂效应的性质。通过对分子水平上的界面进行全面的理论研究,我们发现观察到的阈值电压偏移是由自由电荷引起的,这些自由电荷被 PTCDI-C8 吸引,并在那里被质子化的氨基硅烷稳定下来。这种吸引力和电压偏移可以通过改变氨基硅烷中性端链的长度来系统地调整。
液相结晶硅 (LPC-Si) 是一种自下而上的太阳能电池制造方法,有可能避免晶圆切片技术中的材料损失和能源使用。本文使用线形能源(即激光)结晶所需厚度的硅(5 – 40 μ m)。第一部分报告了优化非晶硅接触层以实现更好的表面钝化的努力。第二部分介绍电子接触上的激光环。它通过创建低电阻接触实现电荷收集和填充因子 (FF) 之间的可控权衡,同时在其他区域保留 a-Si:H (i) 钝化。观察到短路电流密度 (J SC ) 高达 33:1 mA cm 2 ,超过了该技术之前报告的所有值。开路电压 (V OC ) 高达 658 mV,也超过了之前在低体掺杂浓度 (1 10 16 cm 3 ) 下公布的所有值。激光环将 J SC 降低了 0.6 mA cm 2
研究了后退火对蓝宝石衬底上日盲多晶氧化镓 (Ga 2 O 3 ) 紫外光电探测器的物理和电学性能的影响。随着后退火温度 (PAT) 从 800 °C 升高到 1000 °C,多晶 Ga 2 O 3 的晶粒尺寸变大,但随着 PAT 进一步升高到 1100 °C,晶粒尺寸变小。随着 PAT 的增加,在蓝宝石上的 Ga 2 O 3 的透射光谱的吸收带边缘发生了蓝移,这是由于蓝宝石衬底中的 Al 掺入 Ga 2 O 3 中形成 (Al x Ga 1 – x ) 2 O 3 造成的。高分辨率X射线衍射和透射光谱测量表明,1100°C退火后的(Al x Ga 1 – x ) 2 O 3 的取代Al组分和带隙分别可以达到0.30和5.10 eV以上。1000°C退火样品的R max 与沉积态器件相比提高了约500%,且1000°C退火样品的上升时间和下降时间较短,分别为0.148 s和0.067 s。这项研究为多晶Ga 2 O 3 紫外光电探测器的制作奠定了基础,并找到了一种提高响应度和响应速度的方法。
在决定其组装行为中起着关键作用,基于各种形状的NP构建块可以制备出各种复杂的类似超结构,如晶体、塑性晶体和液晶。13 – 26 作为一个显著的例子,四面体最近被证明可以形成各种组装体,包括一维手性四螺旋、二维准晶体和三维基于簇的体心立方单超晶体。27 – 30 尽管在非球形NP方面投入了大量精力,但对具有特殊几何形状的各向异性NP进行系统的自组装研究仍然很少。哑铃在几何上由两个叶组成,由中间的杆连接,这是NP二聚体的最粗糙模型和最简单的非凸体。哑铃中部区域的扩大头部提供了额外的空间排斥力,以限制它们沿某些方向的组装,使它们成为自组装研究的有趣构建块。31 – 36 理论计算预测对称哑铃可以选择性地诱导取向无序退化晶体、人字形晶体和有序斜晶格晶体的形成。33,37 – 40 还进行了实验演示,包括金 ND 的平行排列和十字形二聚体,41,42 外部场下 ND 的受控取向,35,43 – 46 和
许多常见的晶体结构可以用单个(或极少数)重复的结构模式(“单态结构”)来描述,例如立方卤化物钙钛矿中的八面体。有趣的是,最近积累的证据表明,基于这种从 X 射线衍射获得的宏观平均单态立方(Pm-3m)卤化物钙钛矿的电子结构计算与实验结果存在有趣的偏差。这些偏差包括系统性地太小的带隙、由电子主导的介电常数、合金的负混合焓以及与测量的对分布函数的显著偏差。我们在此表明,通过密度泛函理论最小化系统 T = 0 内部能量会揭示不同低对称局部模式的分布,包括倾斜、旋转和 B 原子位移(“多态网络”)。只有当允许大于最小晶胞尺寸且不几何排除低对称模式时,才会发现这种情况。随着(超)晶胞尺寸的增加,能量相对于单晶胞会降低,在包含约 32 个公式单位(⩾ 160 个原子)后稳定下来。作为无熵内部能量的非热能最小化的结果,这组相关的位移必须代表底层化学键合(孤对键合)所偏好的固有几何形状,因此其起源与分子动力学建模的正常动态热无序不同。事实上,多晶网络,而不是单晶拟设,是高温热扰动发展的核心结构。新出现的物理图像是多晶网络具有高对称性的平均结构,但局部结构基序具有低对称性。我们发现,与单晶网络相比,多晶网络的预测总能量明显较低、带隙较大、介电常数以离子为主,并且与观察到的对分布函数更为吻合。类似的多态情况见于一些立方氧化物钙钛矿的顺电相中,其中局部极化在卤化物钙钛矿中起局部位移的作用;也见于一些 3 d 氧化物的顺磁相中,其中局部自旋配置起着作用。
由于高发射极掺杂的影响,传统发射极双极晶体管的电流增益受到限制。理论上,通过使用非常小的基极宽度和高发射极掺杂密度,传统发射极晶体管可以获得更高的增益。然而,增加发射极掺杂会降低带隙并增加少数载流子复合 [1]。结果是发射极注入效率降低,电流增益没有实际改善 [2]。增加发射极掺杂还会产生有害影响,降低发射极-基极击穿电压 (BVebo) 并增加发射极-基极结电容 [3]。与传统发射极相关的另一个问题是缩放。当发射极结深度低于 0.2 微米时,少数载流子扩散长度变得大于发射极,这进一步降低了电流增益 [4]。使用多晶硅作为发射极是避免这些问题的一种方法。
由于驱动电路占整个面板成本的 5-30%,因此单片集成尤为重要。直接在玻璃上制造驱动器,省去了传统的驱动器“安装”和“封装”步骤,简化了模块的组装,并大幅降低了模块组装设备成本。因此,组装产量增加,而且由于需要的外部互连更少,面板工艺产量和可靠性也得到提高。一旦建立了可靠、成熟的 LPS 工艺,人们就可以设想不仅集成 CMOS 驱动器,而且还集成一系列其他元素(控制器、内存、特定 IC)。有了这些,面板本身就变成了系统,引领夏普长期以来设想并积极追求的 SOP(面板系统)概念时代到来。