Medi-Cal Rx 发现索赔处理问题,影响了 2022 年 10 月 1 日或之后至 2023 年 12 月 31 日期间部分 DOS 的 COVID-19 疫苗索赔,这些疫苗的 NDC 为 59267030401、59267030402、59267056501、59267056502、59267060901、59267060902、59267140401、59267140402、80631010001、80631010010、80631010201、80631010210、80777027999、80777028205, 80777028299 和 80777028399。对于这些索赔,40 美元的激励费未包含在报销计算中。Medi-Cal Rx 更新了索赔报销计算,以根据卫生保健服务部 (DHCS) 的政策正确计算 COVID-19 激励费。
总体而言,路易斯安那州将在该计划下5年内获得4000万美元,帮助其实现电网现代化,减少极端天气和自然灾害的影响,确保电力部门基础设施的可靠性,以便所有社区都能随时随地获得经济实惠的可靠电力。
强化学习(RL)是增强面向任务对话(TOD)系统的强大方法。然而,现有的RL方法倾向于主要集中于生成任务,例如对话策略学习(DPL)或反应生成(RG),同时忽略了Dia-Logue State Tracking(DST)进行理解。这个狭窄的焦点限制了系统通过忽视理解与发电之间的相互依赖性来实现全球最佳性能。此外,RL方法面临稀疏和延迟奖励的挑战,这使训练和优化变得复杂。为了解决这些问题,我们通过在整个代币生成中逐步介绍逐步奖励,将RL扩展到理解和生成任务中。随着DST正确填充更多的插槽,理解会增加,而一代奖励则随着用户请求的准确包含而增长。我们的方法提供了与任务完成一致的平衡优化。实验性恢复表明,我们的方法有效地增强了TOD系统的性能,并在三个广泛使用的数据集上获得了新的最新结果,包括Multiwoz2.0,Multiwoz2.1和CAR。与当前模型相比,我们的方法在低资源设置中还显示出优越的射击能力。
依据《市政财务管理法》(MFMA)第 116(3) 条的规定,请求批准延长合同 PSC 2018/010 的履行期限和合同授权:哈马斯代尔污水处理厂改进液体和固体处理设施的专业服务合同(04 区及周边地区)–WS 2022/204
因果关系边界的固有歧义在评估因果事件提取任务时构成了挑战。传统的会议诸如精确匹配和Bertscore之类的传统会议反映了模型性能,因此我们训练了评估模型以近似人类评估,从而达到了高度的一致性。我们用它们通过提取模型来形成增强学习,以使其与人类的喜好保持一致,并优先使用语义理解。我们通过多PLE数据集成功地探索了我们的方法,包括将在一个数据集中训练的评估者转移到另一个数据集中,以减轻对人类注销数据的依赖。在这种情况下,我们还提出了一种弱至较小的诉讼方法,该方法使用AN-NOTARDATED数据的一部分来训练评估模型,同时仍在训练RL模型中达到高性能。1
强化学习(RL)可以将语言模型与非不同的奖励信号(例如人类偏好)相结合。但是,这些奖励信号的稀疏性引起了一个重大挑战 - 通常,整个输出只有一个奖励。这种奖励的稀疏性会导致学习效率低下和不稳定的学习。为了应对这一挑战,我们的论文介绍了一个新颖的框架,该框架利用大型语言模型(LLM)的批评能力在RL培训期间产生中间步骤奖励。我们的方法将一个循环模型与批评语言模型配对,该模型可为策略输出的每个部分提供反馈。然后将此反馈转换为可用于指导RL训练过程的令牌或跨度奖励。我们在两个不同的设置下投资了这种方法:一种政策模型较小,并与更强大的评论家模型配对,而单一语言模型则履行两个角色的另一个。我们评估了三个文本生成任务的方法:情感控制,语言模型排毒和摘要。的结果表明,在自动评估和人类评估的支持下,纳入了人造的内在奖励可以显着提高样本效率和策略模型的整体绩效。该代码可在Google Research Github *下获得。
LLM自我训练中的最新方法主要依赖于LLM生成重音,并以正确的输出答案作为培训数据过滤那些。这种方法通常会产生低质量的微调训练集(例如,计划不正确或中间推理)。在本文中,我们开发了一种加强的自我训练方法,称为REST-MCTS ∗,基于将过程奖励指导与树搜索MCTS ∗集成在一起,用于收集高质量的推理痕迹以及每步价值以培训政策和奖励模型。REST-MCT ∗避免了通常用于通过基于树搜索的强化学习来训练过程奖励的每个步骤手动注释:给定的最终正确答案,REST-MCTS ∗能够通过估算此步骤的概率来推断正确的过程奖励,可以帮助您带来正确的答案。这些推断的奖励提供了双重目的:它们是进一步完善过程奖励模型的价值目标,并促进选择高质量的痕迹进行政策模型自我训练。我们首先表明,与先前的LLM推理基线相比,REST-MCTS ∗中的树搜索策略(如在相同的搜索预算中)具有更高的精度。然后,我们证明,通过使用该搜索策略作为培训数据所搜索的痕迹,我们可以不断增强多种迭代的三种语言模型,并超过其他自我训练算法(例如REST EM和自我奖励LM)。我们在https://github.com/thudm/rest-mcts上发布所有代码。
最初开发用于连续的控制问题,近端政策操作(PPO)已成为各种强化学习(RL)应用程序的工作马,包括生成模型的微调。不幸的是,PPO需要多种启发式术才能实现稳定的收敛性(例如价值网络,剪辑),并以其对这些组件的精确影响的敏感性而臭名昭著。作为回应,我们退后一步,问生成模型时代的简约RL算法是什么样的。我们提出了Rebel,这是一种算法,可简单地减少策略优化问题,以在政策方面将两个完成之间的相对奖励回归到提示中,从而实现了引人注目的轻量级实施。从理论上讲,我们证明了像自然政策梯度这样的基本RL算法可以看作是叛军的变体,这使我们能够在RL文献中的收敛性和样本复杂性方面与最强的已知理论保证相匹配。Rebel还可以清晰地合并离线数据,并扩展以处理我们在实践中经常看到的不及物优先偏好。从经验上讲,我们发现Rebel提供了一种统一的方法,用于具有与PPO和DPO更强或类似性能的语言建模和图像生成,同时比PPO更易于实现,并且在计算上更有效。当微调Llama-3-8B - 教堂时,Rebel在Alpacaeval 2.0,MT-Bench和Open LLM排行榜中取得了出色的表现。可以在https://github.com/zhaolingao/rebel上找到叛军的实施,可以在https://huggingface.co/cornell-agi上找到由Rebel培训的模型。
人工智能研究中心试点奖项申请目的人工智能研究中心 (CAIR) 正在寻求针对医疗和健康相关问题的创新和转化人工智能解决方案的项目提案。试点项目的目标是让研究人员能够追求新颖和创新的想法,从而提高获得外部资金的可能性。这笔资金还旨在让研究人员进行关键实验、使用核心设施或改进分析,以解决外部资金评审员提出的具体批评。最多将资助两个项目。成功的试点将获得高达 40,000 美元的资金,用于 12 个月的项目期间。完整的申请截止日期为 2024 年 12 月 13 日(见下文)。不允许分项奖励、展期和无成本延期。成功的提案可能包括:
在大脑中说明强化学习的主要理论框架是时间差异学习(TD)学习,某些单元信号奖励预测错误(RPE)。TD算法传统上已被映射到多巴胺能系统上,因为多巴胺神经元的firtert offers td算法类似于RPE。然而,TD学习的某些预测与实验结果不一致,并且先前的算法实现对刺激特异性的固定时间基础提出了不可计算的假设。我们提出了一个替代框架,以描述大脑中的多巴形信号传导(F flex(在E x奖励奖励中均获得了E rors)。在Flex中,多巴胺释放相似,但与RPE不同,导致预测与TD形成鲜明对比。虽然Flex本身是一个一般的理论框架,但我们描述了一种特定的,生物物理上合理的影响,其结果与现有和重新分析的实验数据一致。