基于EOM的审查,源本地化过程必须解决前进和反问题(图1)。1,3,5,6)远期问题是当前来源对头皮电势的期望,可以通过准确的头部模型来解决。1,3,5)脑组织的形状和传导分布强烈影响脑电图信号。因此,应使用个性化的MRI来构建确切的头部模型并实现更精确的源定位。4)反问题是指使用头皮电势测量值估算大脑中电流源的精确位置。1)解决此问题的一种方法是使用有关体积导体和发电机解剖结构的合理假设来设定局限性。已经引入了有关反问题的几个建议。1,2,4,5)尤其是作者描述了源分析模型的方法,例如偶极源定位和分布式源定位。从头皮脑电图记录的偶极子源定位可以通过计算当前偶极子的位置,方向和矩参数来估计位置源。4,7)然而,偶极子源定位需要先验假设大脑中的几个活动区域,假定有限数量的等效偶极子,并且可能会因缺失的偶极子而产生偏见。4,5)脑成像方法的最新发展导致了更复杂的选项,可以从头皮EEG信号中定位大脑来源,目前使用了几种分布式源定位方法。4,5,8)4,5)最受欢迎的分布式源模型是最低规范解决方案的修改算法,例如加权最小规范解决方案,低分辨率电磁断层扫描和局部自回旋平均值。
在定位和跟踪应用中,位置估计的准确性受到能够提供相对目标测量值的传感器/信标数量的影响。虽然单个传感器/信标是最容易实现的系统,但必须进行多次测量才能确保位置信息的准确性。多个传感器/信标可以实现更及时的位置验证,但会增加系统复杂性。例如,传感器/信标的属性及其相对于目标物体的几何形状会影响系统的准确性。如果相同的传感器/信标太近,它们将提供几乎相同的信息,对知识库的补充很少。如果传感器/信标相距太远,可能会遗漏一些重要信息。因此,最佳传感器/信标间距介于这两个极端之间。本文将进一步探讨一种控制传感器/信标阵列几何形状的方法,以在实验期间保持最佳跟踪性能配置。
I。i ntelligent i ntelligent载体(IV)是行业和学术界的热门话题[1],而本地化是IV的关键组成部分,可提供对其状态的强大和准确估计[2] - [4]。IV配备了许多传感器,例如GPS,惯性测量单元(IMU),光检测和范围(LIDAR)和相机。IMU给出了IV状态的连续性解决方案,其陀螺仪遭受了时间变化的偏见和不确定的声音,以及IMU的位置和方向估计的准确性随着时间的推移而恶化。在[5]中,提出了一个结合深神经网络的Kalman滤波器(KF),以估算死亡折线的噪声参数。在[6]中,使用仅具有IMU数据的神经网络获得了位移分布的先验。然后,将先验信息与扩展的KF(EKF)集成以估算状态。此外,传感器融合用于在文献中提供更准确的结果[7],[8]。许多GPS/IMU系统已开发用于IV定位。全球位置和速度由GPS提供,同时,从IMU估算了局部位置,方向和速度。GPS/IMU系统可以在许多情况下提供强大的本地化解决方案。但是,GPS在
位置估计的准确性受能够提供相对目标测量值的传感器/信标数量的影响。虽然单个传感器/信标是最容易实现的系统,但必须进行多次测量才能确保位置信息的准确性。多个传感器/信标可以实现更及时的位置验证,但会增加系统复杂性。例如,传感器/信标的属性及其相对于目标物体的几何形状会影响系统的准确性。如果相同的传感器/信标太近,它们将提供几乎相同的信息,对知识库的补充很少。如果传感器/信标相距太远,可能会遗漏一些重要信息。因此,最佳传感器/信标间距介于这两个极端之间。本文将进一步探讨一种控制传感器/信标阵列几何形状的方法,以在实验期间保持最佳跟踪性能配置。
在生命科学领域,众所周知,在 SOC 上取得的最小治疗进展并不总是能保证市场领先地位或商业成功。在位优势,例如较高的处方者意识和优质的市场准入,通常会掩盖新进入者在相同核心终点内的边际改进。因此,公司需要问的关于其开发渠道的问题不仅仅是他们是否能够击败 SOC,而是需要多大程度的改进才能实现有意义的吸收。在 POC 试验之后,一个项目将受益于努力与目标处方者进行终点和阈值测试,目的是了解取代 SOC 需要什么程度的疗效。如果该研究表明阈值将存在技术风险,那么创造尽可能多的差异化机会可能很重要。纳入额外的终点可以提供
现代太空任务越来越多地穿越地月空间,需要扩展空间感知功能。传统的空间域感知 (SDA) 系统最初并非为探测和跟踪地月物体而建造的,这可能需要购置新的传感器系统。每个系统都有许多参数,包括传感类型、高度和平台数量,这些参数可能有所不同。任何“极点位置”的一个关键优势是它的位置远在黄道平面之外,并且提供独特的、在某些情况下是正交的观察几何形状,而这种几何形状迄今为止尚未开发用于操作部署。本文讨论了极点位置轨迹的物理原理、燃料与高度的交换以及技术更新,所有这些都表明在短期内展示极点位置 SDA 能力是可行的。此外,本文设计了一个拟议的原型,使用小型航天器与地面传感器协同工作,并描述了当前可供部署的技术。
纳米式设备为人类血液中的流动引导定位提供了引物。这种本地化允许将感知事件的位置分配给事件本身,从而沿着早期和精确的诊断方面提供益处,并降低了成本和侵入性。流引导的定位仍处于基本阶段,只有少数针对问题的作品。尽管如此,对解决方案的性能评估已经是以一种非标准化的方式进行的,通常是按单个性能指标进行的,并且忽略了在这样的规模(例如Nanodevices的Lim-Is-Ised Energy)中相关的各个方面,并且对于这种挑战性的环境(例如,在B-Body Thz peragation In-Body Thz Propagation中极端衰减)。因此,这些评估的现实主义水平较低,不能客观地进行比较。为了解决这个问题,我们说明了情景的环境和规模相关的特点,并评估了沿一系列异构性能指标(例如本地化的准确性和可靠性)沿着一组异构性能指标的两种最先进的流动定位方法的性能。
摘要:成人脑原发性恶性肿瘤在全球范围内都是致命的。计算机视觉,尤其是人工智能 (AI) 的最新发展,为自动表征和诊断脑肿瘤病变创造了机会。人工智能方法在不同的图像分析任务中提供了前所未有的准确性,包括区分含有肿瘤的大脑和健康的大脑。然而,人工智能模型就像一个黑匣子,隐藏了合理的解释,而合理的解释是将人工智能成像工具转化为临床常规的重要一步。可解释的人工智能方法旨在可视化训练模型的高级特征或集成到训练过程中。本研究旨在评估所选深度学习算法在定位肿瘤病变和在磁共振成像对比中区分病变与健康区域方面的表现。尽管分类和病变定位准确度之间存在显著相关性(R = 0.46,p = 0.005),但本研究中检查的已知 AI 算法根据其他不相关的特征对一些肿瘤大脑进行分类。结果表明,可解释的 AI 方法可以培养对模型可解释性的直觉,并可能在深度学习模型的性能评估中发挥重要作用。开发可解释的 AI 方法将成为改善人机交互和协助选择最佳训练方法的重要工具。
通过开发CRISPR(定期间隔的短质体重复重复)的基因组编辑 - CAS技术彻底改变了生物学领域的许多领域。超过Cas9核酸酶,Cas12a(以前是CPF1)已成为CAS9编辑富含基因组的有希望的替代方法。尽管有承诺,但通过计算工具搜索指导RNA效率预测仍然缺乏准确性。通过计算元分析,我们报告说CAS12A靶标和脱靶裂解行为是核苷酸偏置的因素,相对于原始的邻接基序(PAM)相对于核苷酸不匹配。这些功能有助于训练一个随机的森林机器学习模型,以将准确性提高至少15%,而不是现有算法,以预测CAS12A酶的指导RNA效率。尽管有进展,但我们的报告强调了对更多代表性数据集的需求,并进一步进行基准测试,以可靠,准确地预测CAS12A酶的RNA效率和脱靶效应。
我们引入了一种新算法,称为 PPA(性能预测算法),该算法可以定量测量神经系统元素对其执行任务的贡献。根据一小组病变中性能下降的数据,该算法可以识别参与认知或行为任务的神经元或区域。它还可以准确预测由于多元素病变导致的性能。新算法的有效性在两个具有元素间复杂相互作用的循环神经网络模型中得到了证明。该算法可扩展并适用于大型神经网络的分析。鉴于可逆失活技术的最新进展,它有可能对理解生物神经系统的组织做出重大贡献,并阐明关于大脑局部计算与分布式计算的长期争论。