摘要人工智能(AI)在组织中的作用从从执行常规任务到监督人类雇员的根本上改变了。虽然先前的研究重点是对此类AI主管的规范看法,但员工对他们的行为反应仍未得到探索。我们从关于AI厌恶和赞赏的理论中汲取了理论,以应对该领域内的歧义,并调查员工是否以及为什么遵守人类或AI主管的不道德指示。此外,我们确定了影响这种关系的员工特征。为了告知这一辩论,我们进行了四个实验(总n = 1701),并使用了两种最先进的机器学习算法(因果林和变形金刚)。我们始终发现,与人类监督相比,员工对AI的不道德指示更少。此外,个人特征(例如遵守没有异议或年龄的趋势)构成了重要的边界条件。此外,研究1还确定了主管的感知思维是一种解释机制。,我们通过在两项预注册的研究中通过实验操作来对该介体进行进一步的见解,通过操纵两个AI(研究2)和两个人类主管之间的思维(研究3)。在(预注册)研究4中,我们在激励实验环境中复制了AI主管对AI主管的不道德指示的阻力。我们的研究对人类行为的“黑匣子”对AI主管,尤其是在道德领域中的“黑匣子”产生了见解,并展示了组织研究人员如何使用机器学习方法作为强大的工具来补充实验研究,以创造出更加细粒度的见解。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
向脱碳能源系统过渡是 21 世纪的决定性挑战之一。为避免灾难性的气候变化,全球温室气体排放必须在 2050 年之前达到净零排放(Masson-Delmotte 等人,2019 年)。实现净零排放的道路始于脱碳发电和电气化交通、供暖等能源终端使用。然而,风能和太阳能光伏等可变可再生能源以及电动汽车 (EV) 等新电力负荷的兴起对电力系统提出了挑战。风能和太阳能产出会随分钟、小时和天而变化,而电动汽车等新负荷可能会大幅增加峰值电力需求(Bunsen 等人,2018 年)。这些变化将要求电力系统变得更加灵活,例如通过转移电力需求以匹配可再生能源的可用性并增加能源存储。电动汽车可以充当“车轮上的电池”来提供关键的灵活性——在可再生能源产出高时充电,在可再生能源产出低时放电。然而,电动汽车能够发挥这一作用的程度,关键取决于它们的充电时间以及电动汽车车主将备用电池容量的电能卖给电网的意愿。个体电动汽车车主响应价格激励做出的充电决策将最终决定电动汽车能够提供的系统级灵活性。因此,了解电动汽车车主是否会以及在多大程度上改变他们的充电方式以响应价格激励,是将电动汽车整合到高渗透可再生能源系统的关键(Szinai 等人,2020 年)。在本文中,我们提出了新证据,说明电动汽车车主如何响应价格激励,将充电时间转移到支持太阳能发电高渗透率的电力网络的时间。我们的研究利用高分辨率、逐分钟的远程信息处理数据跟踪所有驾驶、充电和车辆位置,以提供电动汽车车主行为的细致而全面的视图。这个丰富的数据集让我们能够检查充电、驾驶和电池管理的时间和地点。对于为这项研究招募的 390 名澳大利亚特斯拉车主样本,我们首先比较了有屋顶太阳能和没有屋顶太阳能的车主的充电时间和地点。在我们的设置中,当屋顶太阳能车主的太阳能电池板发电时,他们面临着强大的经济激励,希望在家中充电。我们发现充电行为存在很大差异。对于屋顶太阳能车主来说,中午的充电份额高出 76%,高峰需求时段的充电份额低 33%,而在家中充电的份额高出 14%。然后,我们随机分配一半的车主样本,让他们获得激励,以避免在电网最容易承受压力的高峰需求时段充电。此外,
在高强度和高能量山脉中,例如CERN大型强子对撞机(LHC)及其未来的高发光升级,在不同相互作用点周围的两个梁之间的相互作用施加了机器性能的限制。实际上,它们的作用降低了光束寿命,因此,对撞机的光度达到了。这些相互作用称为梁束长距离(BBLR)相互作用,并且在2000年代初首次提出了使用直流线来缓解其效果。目前正在研究该解决方案,以作为增强HL-LHC性能的选项。在2017年和2018年,LHC已安装了四个电线补偿器的示威者。 随后进行了为期2年的实验活动,以验证减轻LHC中BBLR相互作用的可能性。 在此活动中,概念证明完成并激发了一组其他实验,成功地证明了BBLR相互作用在光束条件下与操作配置兼容的效果。 本文详细报告了实验活动的准备,包括相应的跟踪模拟和获得的结果,并为未来提供了一些观点。在2017年和2018年,LHC已安装了四个电线补偿器的示威者。随后进行了为期2年的实验活动,以验证减轻LHC中BBLR相互作用的可能性。在此活动中,概念证明完成并激发了一组其他实验,成功地证明了BBLR相互作用在光束条件下与操作配置兼容的效果。本文详细报告了实验活动的准备,包括相应的跟踪模拟和获得的结果,并为未来提供了一些观点。
化学和酶促探测作为RNA二级结构信息的实验来源的历史悠久。近年来,此类方案与高通量测序方法相连,以提供对整个转录组结构信息的访问(Kubote等,2015; Carlson等,2018)。尽管结构探测的有用性无可争议,但重要的是要记住,任何探测方法提供了一个编码RNA结构信息的信号,但远离直接测量或明确确定结构的信号。RNA结构的广泛经验证据已被整合到RNA二级结构预测的“标准模型”中。It de fi nes an RNA secondary structure as a collection of Watson-Crick and GU base pairs such that i) each base has at most one pairing partner, ii) base pairs do not cross, i.e., if ( i , j ) is a pair, then there is no pair ( k , l ) with i < k < j and l < i or l > j , and iii) every base pair spans at least three unpaired positions ( Lorenz et al., 2011 )。这种类型的每种结构都与可以计算为其循环总和(其独特平面嵌入的一个方面)的能量相关联,该能量对应于堆叠的碱基对,发夹环,内部环和多支线环路。每个循环的能量贡献取决于其顺序,但独立于其外部环境。从序列依赖性环能贡献的综合表中(主要是)通过在小型,特定的设计RNA分子上进行的熔化实验(Andronescu等,2014)。(Turner and Mathews,2010年),它们用于确切的动态编程算法,这些算法预测了任意RNA序列的辅助结构的玻尔兹曼集合中的基态结构或基本配对概率。我们注意到随机上下文无语法(SCFG)在本质上使用相同的模型(Rivas等,2012),并且可以作为热力学方法的替代方法。通常,使用已知结构的学习方法进行参数化,例如,参见(Do等,2006)。出于当前贡献的目的,只有一个“通用”模型可以预测(合理的近似值)二级结构以任意RNA序列为输入。经验证据,例如,从探测实验中可以包括在普遍的结构预测方法中,作为与经验证据相矛盾或额外能量项(软约束)相矛盾的硬性约束结构,偏爱与其他结构更好地符合其他经验数据的结构,请参见,例如,请参见,例如(Lorenz等,
通过谱系可塑性和发散的克隆进化(3,5-7)。CRPC-NE患者通常通过类似于小细胞肺癌(SCLC)的化学疗法方案进行积极治疗,并且还在进行几项CRPC-NE指导的临床试验。当前CRPC-NE的诊断仍然存在,因为需要转移活检以及室内肿瘤异质性。浆细胞-FRE-FREDNA(CFDNA)的DNA测序是一种无创的工具,可检测CER中的体细胞改变(8)。但是,与CRPC-Adeno相比,癌症特异性突变或拷贝数的变化仅在CRPC-NE中适度富集(3,9)。相反,我们和其他人观察到与CRPC-NE相关的广泛的DNA甲基化变化(3,10),并且可以在CFDNA中检测到这种变化(11,12)。DNA甲基化主要是在CpG二核苷酸上进行的,并且与广泛的生物学过程有关,包括调节基因的表达,细胞命运和基因组稳定性(13)。此外,DNA甲基化是高度组织特异性的,并提供了强大的信号来对原始组织进行反v,从而允许增强循环中低癌部分的检测(16、17),并已成功地应用于早期检测和监测(18,19)。如前所述,可以用甲硫酸盐测序来测量基础分辨率下的DNA甲基化,该测序为每种覆盖的CpG提供了一小部分甲基化的胞质的β值的形式,范围为0(无甲基化)至1(完全甲基化)。低通序测序遭受低粒度,并以粗分辨率捕获所有区域。原则上,诸如全基因组Bisulfite CFDNA测序(WGB)之类的方法可以很好地了解患者的疾病状况,并具有最佳的甲基化含量信息。实际上,鉴于高深度全基因组测序的成本,WGB的低通型变种适用于大规模的临床研究。鉴于此上下文中的大多数CPG站点可能是非信息或高度冗余的,我们旨在将测序空间减少到最小设置
通过石墨烯进行远程外延相互作用的实验证据 Celesta S. Chang 1,2,† 、Ki Seok Kim 1,2,† 、Bo-In Park 1,2,† 、Joonghoon Choi 3,4,† 、Hyunseok Kim 1 、Junsek Jeong 1 、Matthew Barone 5 、Nicholas Parker 5 、Sangho Lee 1 、Kuangye Lu 1 、Junmin Suh 1 、Jekyung Kim 1 、Doyoon Lee 1 、Ne Myo Han 1 、Mingi Moon 6 、Yun Seog Lee 6 、Dong-Hwan Kim 7,8 、Darrell G. Schlom 5,*、Young Joon Hong 3,4,*、和 Jeehwan Kim 1,2,6,9,* 1 麻省理工学院机械工程系,美国马萨诸塞州剑桥 02139,2 麻省理工学院电子研究实验室,美国马萨诸塞州剑桥 02139 3 世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 4 GRI-TPC 国际研究中心和世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 5 康奈尔大学材料科学与工程系,纽约州伊萨卡,14850,美国 6 首尔国立大学机械工程系,首尔,韩国 7 成均馆大学(SKKU)化学工程学院,水原 16419,韩国 8 成均馆大学(SKKU)生物医学融合研究所(BICS),水原 16419,韩国 9 麻省理工学院材料科学与工程系,马萨诸塞州剑桥 02139,美国 † 这些作者的贡献相同。 * 通讯至 jeehwan@mit.edu、yjhong@sejong.ac.kr、schlom@cornell.edu ORCID ID:Celesta S. Chang (0000-0001-7623-950X)、Ki Seok Kim (0000-0002-7958-4058)、Bo-In Park (0000-0002-9084-3516)、崔仲勋 (0000-0002-2810-2784)、郑俊石 (0000-0003-2450-0248)、金贤锡 (0000-0003-3091-8413)、李尚浩(0000-0003-4164-1827),路匡业(0000-0002-2992-5723)、Jun Min Suh(0000-0001-8506-0739)、Do Yoon Lee(0000-0003-4355- 8146)、Ne Myo Han(0000-0001-9389-7141)、Yun Seog Lee(0000-0002-2289-109X)、Dong-Hwan Kim(0000-0002-2753-0955)、Darrell Schlom(0000-0003-2493-6113)、Young Joon Hong(0000- 0002-1831-8004)、Jeehwan Kim(0000-0002-1547-0967)摘要远程外延的概念利用衬底的衰减电位二维范德华层覆盖在基底表面,这使得吸附原子能够进行远程相互作用,从而遵循基底的原子排列。然而,必须仔细定义生长模式,因为二维材料中的缺陷可以允许从基底直接外延,这可能会进一步诱导横向过度生长形成外延层。在这里,我们展示了一种只能在远程外延中观察到的独特趋势,与其他基于二维的外延方法不同。我们在图案化石墨烯上生长 BaTiO 3,以显示一个反例,其中基于针孔的外延无法形成连续的外延层。通过观察在没有单个针孔的石墨烯上生长的纳米级成核位点,我们在原子尺度上直观地证实了远程相互作用。从宏观上看,GaN微晶阵列的密度变化取决于衬底的离子性和石墨烯层数,这也证实了远程外延机制。
摘要 用于提高业务绩效的低成本营销工具是否也有助于创造更美好的世界?作者通过随机对照田间试验研究了在线社交媒体工具在缓解客户(农民)不确定性和促进中国农村采用新型环保农药方面的作用。关键发现是,即使对于农药等新产品,低成本社交媒体支持平台也可以有效促进采用。平台上来自同行和公司的信息相结合,有助于了解产品特性,并减轻与产品质量和适当产品使用相关的不确定性。然而,在漏斗的试用阶段,该平台的表现不如公司的定制一对一支持,因为现有信息无法解决供应商可信度和产品真实性的不确定性。让平台上有影响力的人(尽管不是该产品的专家)保证其可信度有助于解决这个漏斗阻碍问题。从理论角度来看,本文为社交媒体平台上的参考影响和可信度信号以及新产品试用的后果提供了启发性证据。作者还提供了关于信息如何促进学习的直接实证证据,这一现象通常被认为存在于评估学习模型的研究中。
>LaNiO/mi>mn>3/mn>/msub>mo>//mo>msub>mi>CaM nO/mi>mn>3/mn>/msub>/math> 铁磁界面 JR Paudel,M. Terilli,T.-C。吴、JD Grassi、AM Derrico、RK Sah、M. Kareev、F. Wen、C.
氧化物异质结构中的界面电荷转移产生了丰富的电子和磁现象。设计异质结构,其中一个薄膜成分表现出金属-绝缘体转变,为静态和动态控制此类现象开辟了一条有希望的途径。在这项工作中,我们结合深度分辨的软 x 射线驻波和硬 x 射线光电子能谱以及偏振相关的 x 射线吸收光谱,研究了 LaNiO 3 中的金属-绝缘体转变对 LaNiO 3 /CaMnO 3 界面处电子和磁态的影响。我们报告了在金属超晶格中直接观察到的界面 Mn 阳离子的有效价态降低,该超晶格具有高于临界的 LaNiO 3 厚度(6 个晶胞,uc),这是由流动的 Ni 3 deg 电子向界面 CaMnO 3 层中的电荷转移促成的。相反,在厚度低于临界值 2u.c. 的 LaNiO 3 绝缘超晶格中,由于界面电荷传输受阻,整个 CaMnO 3 层中观察到 Mn 的有效价态均匀。切换和调节界面电荷传输的能力使得能够精确控制 LaNiO 3 /CaMnO 3 界面上出现的铁磁状态,因此对下一代自旋电子器件的未来设计策略具有深远的影响。