化学和酶促探测作为RNA二级结构信息的实验来源的历史悠久。近年来,此类方案与高通量测序方法相连,以提供对整个转录组结构信息的访问(Kubote等,2015; Carlson等,2018)。尽管结构探测的有用性无可争议,但重要的是要记住,任何探测方法提供了一个编码RNA结构信息的信号,但远离直接测量或明确确定结构的信号。RNA结构的广泛经验证据已被整合到RNA二级结构预测的“标准模型”中。It de fi nes an RNA secondary structure as a collection of Watson-Crick and GU base pairs such that i) each base has at most one pairing partner, ii) base pairs do not cross, i.e., if ( i , j ) is a pair, then there is no pair ( k , l ) with i < k < j and l < i or l > j , and iii) every base pair spans at least three unpaired positions ( Lorenz et al., 2011 )。这种类型的每种结构都与可以计算为其循环总和(其独特平面嵌入的一个方面)的能量相关联,该能量对应于堆叠的碱基对,发夹环,内部环和多支线环路。每个循环的能量贡献取决于其顺序,但独立于其外部环境。从序列依赖性环能贡献的综合表中(主要是)通过在小型,特定的设计RNA分子上进行的熔化实验(Andronescu等,2014)。(Turner and Mathews,2010年),它们用于确切的动态编程算法,这些算法预测了任意RNA序列的辅助结构的玻尔兹曼集合中的基态结构或基本配对概率。我们注意到随机上下文无语法(SCFG)在本质上使用相同的模型(Rivas等,2012),并且可以作为热力学方法的替代方法。通常,使用已知结构的学习方法进行参数化,例如,参见(Do等,2006)。出于当前贡献的目的,只有一个“通用”模型可以预测(合理的近似值)二级结构以任意RNA序列为输入。经验证据,例如,从探测实验中可以包括在普遍的结构预测方法中,作为与经验证据相矛盾或额外能量项(软约束)相矛盾的硬性约束结构,偏爱与其他结构更好地符合其他经验数据的结构,请参见,例如,请参见,例如(Lorenz等,
主要关键词