摘要 本论文研究了人工智能 (AI) 对瑞典劳动力市场的影响。人工智能对知识密集型劳动力的影响尤其令人感兴趣,因为这是一个受人工智能影响更大的群体。理论预测人工智能将使工作任务自动化,同时导致经济中引入新任务。利用职位空缺数据,该论文通过研究机构接触人工智能的两种不同影响阐明了这一主题。首先,研究对劳动力雇用的影响,将劳动力分为工作任务与人工智能相关的劳动力组和工作任务与人工智能无关的劳动力组。其次,测试对机构对非人工智能劳动力所需技能变化的影响。这两个问题都旨在确定劳动任务是否确实被人工智能自动化,以及是否引入了新的工作任务。结果表明,接触人工智能的企业增加了非人工智能劳动力的雇用。此外,研究发现,接触人工智能与所需技能数量的减少有关。知识密集型企业和职业与接触人工智能的关系似乎略弱。结果的解释是,一些人工智能自动化正在发生,尽管不足以引起劳动力市场的重大变化。
摘要 为实现可持续能源系统,进一步增加可再生能源 (RES) 发电量势在必行。然而,RES 的开发和实施带来了各种挑战,例如,处理由于 RES 的间歇性而导致的电网稳定性问题。相应地,日益波动甚至为负的电价也对 RES 电厂的经济可行性提出了质疑。为了应对这些挑战,本文分析了 RES 电厂与计算密集型、耗能数据中心 (DC) 的集成如何促进对 RES 电厂的投资。开发了一个优化模型,用于计算由 RES 电厂和 DC 组成的综合能源系统 (IES) 的净现值 (NPV),其中 DC 可以直接消耗来自 RES 电厂的电力。为了获得适用的知识,本文通过以下方法评估了所开发的模型:
随着大数据,人工智能和机器学习技术在医学领域的广泛应用,数据密集型临床研究的新范式正在成为推动医疗进步的关键力量。这个新范式在临床专业领域的研究生教育方面提出了前所未有的挑战,涵盖了多学科整合需求,高质量的教师短缺,学习方法转换,评估系统的更新和道德问题。未来的医疗保健专业人员不仅需要拥有传统的医学知识和临床技能,还需要掌握跨学科技能,例如数据分析,编程和统计。回应,本文提出了一系列的对策,包括课程重建,教师发展,发展和共享资源,更新评估和评估系统以及加强道德教育。这些举措旨在帮助临床研究生教育更好地适应这种新的范式,最终在医疗机构整合中培养跨学科才能。
跨国企业(MNE)持续导航以政治不确定性为特征。然而,目前尚不清楚这种不确定性如何影响跨国公司海外研发(R&D)投资的位置和部门传播。这项研究深入研究了政治不确定性对知识密集型部门的研发投资的影响,尤其是在发展中国家中,从而增强了我们对上下文变化的理解。使用MNE Greenfield R&D全球投资项目的独特数据集在2003 - 2019年期间,我们表明政治不确定性会对研发行为投资产生负面影响。此外,我们探索部门和东道国特定于位置的边界条件,这些边界条件适应这种关系并为我们的假设提供支持。我们的调查结果表明,与发达国家相比,发展中国家的MNE研发投资在发展中国家(SBS)和知识密集型商业服务(KIBS)部门不太容易受到政治上的影响。我们的结果要求跨国公司的经理和政策制定者对投资国的政治发展的更多关注。
在数字、健康、恢复力和清洁能源等每个领域,大学在推动国家繁荣方面都发挥着重要作用。它们在公共教育和研究投资与可能改变我们经济和社会的私人创新之间架起了一座桥梁。从纽卡斯尔大学开创性的国家老龄化中心的发展,到谢菲尔德大学设立英国唯一的可持续航空燃料认证中心,我们的研究型大学正在全国各个地区的工业战略任务中发挥真正和持续的影响。这一成功基于密切的合作和长期的关系,并得到了对研发、基础设施和技能的稳定投资的支持。
预先注册的参与者:开尔文·德罗格梅尔(伊利诺伊大学),安德烈亚斯·普雷因(NCAR,主席),弗兰克·亚历山大(Argonne National Laboratory),Dee A Bates(伊利诺伊州Urbana-Champ),Christopher S. Brethertherthertry(Christopher S. Bretherton Instute) Chipilski(佛罗里达州立大学),Peter Dueben(ECMWF),Dale Durran(华盛顿大学),Pedram Hassanzadeh(芝加哥大学),Daniel S Katz,Daniel S Katz(伊利诺伊州Urbana-Champaign)玛格德堡(Magdeburg),Ruby Leung(Pacific Northwest National Laboratory),Maria Molina(马里兰州大学公园主席),John Shalf(劳伦斯·伯克利国家实验室),Maike Sonnewald(加利福尼亚大学戴维斯大学),邓肯·戴维斯大学,邓肯·沃森·帕里斯(duncan wats of Classion of oliver watt-mey and Instement and Instem and Instem and Insterme <预先注册的参与者:开尔文·德罗格梅尔(伊利诺伊大学),安德烈亚斯·普雷因(NCAR,主席),弗兰克·亚历山大(Argonne National Laboratory),Dee A Bates(伊利诺伊州Urbana-Champ),Christopher S. Brethertherthertry(Christopher S. Bretherton Instute) Chipilski(佛罗里达州立大学),Peter Dueben(ECMWF),Dale Durran(华盛顿大学),Pedram Hassanzadeh(芝加哥大学),Daniel S Katz,Daniel S Katz(伊利诺伊州Urbana-Champaign)玛格德堡(Magdeburg),Ruby Leung(Pacific Northwest National Laboratory),Maria Molina(马里兰州大学公园主席),John Shalf(劳伦斯·伯克利国家实验室),Maike Sonnewald(加利福尼亚大学戴维斯大学),邓肯·戴维斯大学,邓肯·沃森·帕里斯(duncan wats of Classion of oliver watt-mey and Instement and Instem and Instem and Insterme <
C.生理学和有机生物学(每个列表中的至少一门课程)i(动物/人)biol3101动物行为(6)(带有实验室)BBIOL3105动物生理学和环境适应(6)BIOIL3205人类生理学(6)Biol3403免疫学(与实验室)BIOL 3403 BIOL 3406 BIOL 3406 GRODICT和RODED 6406 GRODICTICT(6)复制(6) BIOL3503 Endocrinology: human physiology II (6) (with labs) List II (Plant) BIOL3314 Plant structure and evolution (6) ENVS3202 Plant ecophysiology and climate change (6) (with labs) BIOL4411 Plant and food biotechnology (6 ) (with labs) List III (Microbiology) BIOL3109 Environmental microbiology (6) BIOL3203 Food微生物学(6)(带有实验室)Biol3218食物卫生和质量控制(6)Biol3508微生物生理学和生物技术(6)(带实验室)Biol4401医学微生物学和应用免疫学(6)(带有实验室)
2 我们根据总产能(900 万吨,高于目前 560 万吨的实际产量)做出这一假设,请参阅:UK Steel,2023 年,《英国钢铁产能和能力》。根据 F Martell-Chavez、ME Marcias-Garcia 和 AR Izaguirre-Alegria,2020 年,《IEEE 工业应用汇刊》,第 56 卷,第 6 期,电弧炉每生产一吨钢消耗约 0.5 MWh 的电量。这导致估计总消耗量为每年 4.5 TWh。我们假设电价为每兆瓦时 100 英镑,这是第六轮 CfD 拍卖中海上风电开发商可获得的最高执行价格,并使用英格兰银行的通胀计算器根据通胀调整至 2024 年价格。
从事指定活动的企业在可获得信息的最近一个日历年支付的电价 4 ,以英镑/兆瓦时表示,并根据国务卿确定的通货膨胀指标进行调整,以反映自 2012 年 1 月 1 日开始的日历年的价格。该价格以《季度能源价格》出版物中针对普通工业用户的 2022 年电价为基础 5 这是目前 2022 年的价格,使用英国财政部使用预算责任办公室和国家统计局 6 的数据发布的最新 GDP 平减指数将其缩减至 2012 年价格后,为 166.84 英镑/兆瓦时。
摘要:欧盟为实现到 2030 年至少减少 55% 的排放量和到 2050 年实现气候中和的目标,正在部署不同的行动,其中工业脱碳是一项关键战略。然而,不断增长的电力需求需要加强清洁技术的能源生产,而可再生能源发电的气候依赖性和大量电力基础设施投资的必要性阻碍了能源系统的扩张。虽然输电网预计会增长,但需要应用灵活性机制和创新技术来避免过度增长。在此背景下,本文在 FLEXINDUSTRIES 项目中对七个能源密集型行业(汽车工业、生物燃料生产、聚合物制造、钢铁制造、造纸厂、制药业和水泥生产)的灵活性潜力进行了全面评估。分析过程中遵循的方法需要审查现有的最新灵活性机制、行业能源市场参与度以及技术/运营准备情况。结果强调了通过需求响应计划、量化能源机会以及查明监管和技术障碍来实现能源市场灵活性的拟议行动的可行性。