包括核苷酸实体的疗法是非常广泛的类别,涵盖了核苷酸类似物,寡核苷酸和基于核酸的疗法。核苷酸/基于核苷的药物已经进行了很好的探索,临床批准的候选者是抗病毒,抗癌,抗细菌和抗毛状细胞类似(Garner,2021)。寡核苷酸疗法是相对近期且有前途的,包括反义寡核苷酸(ASOS),小型干扰RNA(siRNA),短发夹RNA(SHRNAS),抗菌毛(抗微生物)(抗MIRS)。寡核苷酸选择性地结合RNA或蛋白质,阻断其功能或促进降解。寡核苷酸疗法显示出在治疗遗传疾病,癌症,病毒感染和神经退行性疾病方面的潜力(Roberts,2020年)。目前,批准了15种寡核苷酸疗法治疗美国各种罕见疾病,其中四种批准针对Duchenne肌肉营养不良。尤其是在2020年3月,Viltolarsen的批准引起了全世界研究人员对寡核苷酸疗法的关注(Igarashi,2022年)。基于核酸的疗法包括长多核苷酸的靶向疾病,旨在调节基因表达,正确的遗传突变或干扰引起疾病的过程(Sridharan,2016)。发现CRISPR-CAS9基因编辑技术已彻底改变了基于核酸的治疗剂,但仍在研究持久的研究,以改善其递送方法,增强靶向特异性,并确保此类治疗剂的安全和效果(Udddin,2020)。发现CRISPR-CAS9基因编辑技术已彻底改变了基于核酸的治疗剂,但仍在研究持久的研究,以改善其递送方法,增强靶向特异性,并确保此类治疗剂的安全和效果(Udddin,2020)。研究人员正在努力继续探索寡核苷酸的转化潜力,同时解决了各种相关的挑战,例如特殊的挑战,交付,
并促进寡核苷酸有效载荷的吸收和内化。通过将抗体的细胞和组织选择性与基于寡核苷酸的方法的选择性和效率相结合,Avidity Biosciences 的研究人员已经证明了调节
实现寡核苷酸的特定目标递送,无论是疾病部位,特定组织还是器官,对于增强治疗精度并最大程度地降低了脱靶效应至关重要。通过化学修饰的寡核苷酸和纳米颗粒等先进方法促进了这种精确的递送,对提高治疗效果具有巨大的希望。寡核苷酸和基因,尤其是mRNA,siRNA,反义RNA和CRISPR-CAS9系统,是传统治疗方式的替代方案。本期特刊旨在汇编研究文章和审查以癌症为癌症,靶向组织和器官靶向寡核苷酸的传递。特别重点放在修饰的mRNA,siRNA,反义RNA,CRISPR-CAS9,microRNA,质粒DNA和DNA,以及涉及纳米颗粒,树枝状聚合物和LNP的有效递送系统。了解寡核苷酸的结构和化学修饰,再加上成功的包装系统,对于在这个迅速前进的领域中成功的基因治疗是至关重要的。我们期待收到您的提交。
有效提取药物分析物是药物代谢和药代动力学(DMPK)研究的关键方面。这长期用于小分子,仍然适用于寡核苷酸的生物分析。寡核苷酸药物及其代谢产物必须在生物流体和组织样品中进行定量。最新的寡核苷酸药物都经过广泛修饰和共轭。这些修改后的残基和共轭部分会使提取恢复和可重复性复杂化。在这项工作中,我们报告了有关如何实现改进提取的几个关键见解。使用弱阴离子交换(WAX)基于微板的固相萃取(SPE)设备来研究溶剂辅助蛋白酶K样品预处理的方案。直接注射LC-MS定量已证明了所有三种反义寡核苷酸(ASOS)的定量。
鉴于本指南涵盖的试验性反义寡核苷酸将仅用于少数患有 SDLT 疾病的个体,建议用于支持首次人体 (FIH) 暴露的非临床安全性 43 包通常不如用于开发旨在更广泛使用或在不太严重的临床情况下使用的反义寡核苷酸产品时通常建议的广泛。 3 为了抵消由于数据有限而导致的更大风险假设,重要的是申办方提供令人信服的体外和/或体内概念验证 (POC) 数据,作为任何试验前新药 (pIND) 会议 48 包或原始试验性新药 (IND) 提交的一部分(如果没有要求 49 前 IND 会议),用于本指南涵盖的试验性反义寡核苷酸。这些数据对于支持成人和儿科受试者的潜在益处非常重要。 51
DNA 合成技术推动了合成生物学领域的快速发展,该领域涉及新型生物成分的设计和制造。DNA 合成技术的巨大前景是毋庸置疑的,但它被故意或意外滥用的可能性也不容忽视。为了生物安全,美国卫生与公众服务部 (HHS) 于 2010 年发布了《合成双链 DNA 供应商筛查框架指南》,呼吁双链 DNA (dsDNA) 商业供应商自愿筛查所有订单。最值得注意的是,一组名为国际基因合成联盟 (IGSC) 的 dsDNA 合成公司已根据 HHS 指南实施了协调筛查协议 (HSP)。虽然 IGSC 所有成员并未使用单一的 DNA 筛查算法,但 DNA 筛查软件通常遵循 HSP 指南,将查询序列与相对较短的生物毒素列表进行比对,并选择药剂基因组、基因或蛋白质。我们在此描述了当前筛选过程中涉及的挑战、改进的想法,以及说明为什么克服当前的进步障碍如此关键的示例。
SYNTAX 96 高保真试剂盒包括并行酶促合成 96 个即用型 DNA 寡核苷酸(长度可达 120 个核苷酸 (nt))所需的试剂和耗材,适用于需要高序列准确性的应用,例如基因组装、蛋白质诱变或 CRISPR 基因编辑。寡核苷酸的快速设置和打印可在下游工作流程中当天或次日使用。使用 SYNTAX 系统进行寡核苷酸合成时,合成和运行试剂盒都是必需的。
摘要:随着发现诱导的多能干细胞(IPSC),现在可以从无限的体细胞来源产生多种细胞类型,包括IPSC衍生的心肌细胞(IPSC-CM)。这些IPSC-CM用于不同目的,例如疾病建模,药物发现,心脏毒性测试和个性化医学。2D IPSC-CM模型已显示出令人鼓舞的结果,但与体内成人心肌细胞相比,它们更不成熟。新颖的方法创建3D模型,并可能正在开发其他(心脏)细胞类型。这不仅会改善细胞的成熟度,而且还会导致更与人心脏更相似的生理相关模型。在这篇综述中,我们着重于2D和3D中遗传性心律不齐的建模以及这些模型在治疗开发和药物测试中的使用。
此快速参考指南旨在适用于经验丰富的用户,这些用户已经熟悉处理16件包幻灯片上的Angilent HT微阵列,以进行比较基因组杂交(CGH)。如果您是新用户,请参阅出版物G4132-90000,使用Agilent HT Microars-azymatic-emzymatic标记GDNA的高通量ACGH分析,该标记使用SERETAG HT KIT协议,这是该快速参考指南的全长版本。全长协议包括其他说明和详细信息,以及程序注释,套件内容的信息,所需的材料和设备以及故障排除提示。
1 西班牙马德里康普顿斯大学化学学院物理化学系,2 西班牙马德里十月十二日医院健康研究所 (Imas12),3 德国比勒费尔德大学物理和生物物理化学系,药理学系,4 西班牙马德里康普顿斯大学医学院,5 精神健康网络生物医学研究中心 (CIBERSAM) ISCIII。马德里,马德里,西班牙,6 康普顿斯大学化学学院有机化学系,马德里,西班牙,7 巴塞罗那生物医学研究所,西班牙国家研究委员会 (CSIC) 08036 巴塞罗那,巴塞罗那,西班牙,8 调查研究所 (生物多样性生物医学科学研究所),西班牙,9 弗朗西斯科·维多利亚大学生物卫生研究所,马德里,西班牙