血脑屏障 (BBB) 是一种高度选择性的半透性膜,可防止有害物质从血液进入,从而保护中枢神经系统 (CNS)。血脑屏障对于维持神经稳态至关重要,但它对神经肿瘤治疗药物的输送造成了重大障碍,尤其是脑肿瘤,如胶质母细胞瘤。传统疗法通常无法在脑中达到足够的浓度,导致治疗效果不佳。为了应对这一挑战,研究人员已经开发出创新策略来调节血脑屏障的通透性并促进靶向药物输送。血脑屏障由紧密堆积的内皮细胞、星形胶质细胞终足和基底膜组成,形成强大的防御机制。它限制大分子、蛋白质和超过 98% 的小分子药物的通过。这种保护虽然有利于抵御毒素和病原体,但却成为有效治疗脑癌的障碍。此外,脑肿瘤本身可以改变血脑屏障的完整性,产生异质通透性,使治疗输送变得复杂。聚焦超声与微泡相结合已成为一种有前途的技术,可以暂时且可逆地破坏血脑屏障。超声波使微泡在脑血管内振荡,暂时松弛内皮细胞之间的紧密连接。这使得药物能够更有效地渗透到中枢神经系统。
血神经屏障 (BNB) 与血脑屏障和血脊髓屏障一样,是神经系统的重要组织屏障之一。它在体内平衡、生理保护和病理反应中起着至关重要的作用。各种因素,如生物、物理和化学因素,都可能导致 BNB 暂时或永久性的功能障碍。随着生物技术的进步和创伤和糖尿病性周围神经病变等周围神经损伤的增多,BNB 越来越受到关注。此外,BNB 的防御功能阻碍了治疗输送和麻醉药物,从而损害了治疗体验和生活质量。值得注意的是,BNB 的微观结构、功能和开放涉及许多途径,但真正的潜在分子机制仍在不断探索和研究中。本综述总结了 BNB 的微观结构和信号通路,并深入讨论了生理和病理条件下 BNB 的暂时或永久性中断。
ASTM F436 ,1 级,螺栓符合 ASTM A307 标准。确保螺母、垫圈和螺栓按照 AASHTO M232 C 级进行热浸涂层,或按照 ASTM B695 50 级进行机械涂层。(4)提供符合计划并按照 ASTM A741 进行镀锌的钢丝绳和配件。(5)安装前,将镀锌部件存放在地面以上,远离表面径流。如果镀锌层受到物理损坏或氧化,部门可能会拒收材料。(6)提供制造商的图纸以及专有系统的安装和维护说明。(7)提供 APL 的车间应用的 F 型反光膜。(8)提供符合 WMUTCD 中所示的 3 型物体标记图案的物体标记。(9)提供 APL 的护栏反射器。
4。发起人对获得奖品的任何失败或延迟不承担任何责任,但在获奖者未收到奖品的情况下,将提供所有合理的帮助。5。如果获奖者未能提供其联系人或银行帐户详细信息或在促销期结束后的5天内有效索取奖品,则该奖品将被没收。6。这些条款和条件(包括晋升期)可以修改,并随时由发起人终止晋升。7。发起人对所有入境和晋升事项的决定都是最终的,不会涉及通信。8。进入此促销活动被视为接受这些条款和条件。9。参与者授予NZME使用其出现的姓名,照片,声音和电影录音,与促销和未来促销和营销目的有关,并放弃对这种使用的特许权使用费,权利或报酬的任何要求。这包括NZME网站上使用的权利,Facebook页面,播放和其他NZME出版物。10。出于促销目的,发起人和赞助商将收集和使用您的个人信息(例如,您的电子邮件地址和其他联系方式)。参与者同意促进者与赞助商共享其个人信息的目的,以促销和为赞助商提供有关赞助商产品和服务的信息。11。将根据各自的各自隐私政策收集,持有和使用提供给发起人和/或赞助商的任何个人信息: div>
摘要 - 在防止过度保守行为的同时,对自动驾驶行为进行高度任务至关重要。在本文中,我们提出了一种屏障增强的平行同位轨迹优化(BPHTO)方法,使用过度删除的乘数交替方向方法(ADMM)进行实时集成决策和计划。为了促进自我车辆(EV)与周围车辆之间的安全相互作用,根据屏障功能,开发了一个时空安全模块,该模块展示了双向脉冲。在计划范围内的不同时间步骤中采用了不同的障碍系数,以解释周围HVS的不确定性并减轻保守行为。此外,我们利用驱动器操作的离散特性来初始化基于可及性分析的名义面向行为的自由式同型轨迹,并且每个轨迹在本地限制为特定的驾驶操作,同时共享相同的任务目标。通过利用安全模块和EV的运动学的双凸度,我们将BPHTO作为BI-CONVEX优化问题。然后使用约束转录和过度删除的ADMM来简化优化过程,从而可以实时生成多个轨迹,并具有可观的保证。通过一系列实验,拟议的开发显示了使用合成和现实世界流量数据集在各种交通情况下的任务准确性,稳定性和一致性的提高。
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2024 年 11 月 15 日发布了此版本。;https://doi.org/10.1101/2023.01.04.522827 doi:bioRxiv 预印本
抽象 - 装备自主机器人,能够在人类周围安全有效地导航的能力是迈向实现可信赖的机器人自治的关键一步。但是,在确保动态多机构环境中的安全性的同时生成机器人计划仍然是一个关键挑战。基于最新的工作,以利用深层生成模型在静态环境中进行机器人计划,本文提出了Cobl-Diffusion,这是一种基于扩散的新型安全机器人计划器,用于动态环境。COBL扩散使用控制屏障和Lyapunov函数来指导扩散模型的固定过程,迭代地完善了机器人控制序列以满足安全性和稳定性约束。我们使用两个设置证明了COBL扩散的有效性:合成单位环境和现实世界中的行人数据集。我们的结果表明,COBL扩散会产生平滑的轨迹,使机器人能够到达目标位置,同时保持低碰撞速率,并具有动态障碍。
摘要 转铁蛋白受体 (TfR) 介导的跨血脑屏障 (BBB) 转胞吞作用是一种有前途的策略,可改善生物制剂向中枢神经系统 (CNS) 的输送。然而,年龄和与衰老相关的疾病是否会影响 TfR 表达和/或 BBB 转运能力仍不清楚。在这里,我们使用 TfR 靶向抗体转运载体 (ATV TfR) 来增强健康小鼠和阿尔茨海默病 (AD) 的 5xFAD 小鼠模型中的 CNS 输送。健康新生儿表现出最高的血管 TfR 表达和 ATV TfR 脑暴露,而 BBB 转运能力在成年期保持稳定。此外,5xFAD 小鼠的 TfR 表达和 ATV TfR 脑摄取均未发生显着变化。此外,AD 患者大脑中的血管 TfR 表达与年龄匹配的对照组相似,这表明 TfR 转运可能在人类 AD 中得到保留。在小鼠早期发育过程中观察到 TfR 介导的脑内输送增多,这表明利用 TfR 平台治疗儿童早期疾病具有更高的疗效。成年小鼠在健康老龄化和 AD 模型中 ATV TfR 转运的保留支持 TfR 平台在与年龄相关的疾病中继续应用。简介血脑屏障 (BBB) 的高度限制性对许多小分子和几乎所有大分子向中枢神经系统 (CNS) 的输送构成了重大挑战 (1-3)。由于全身给药的 IgG 通常只有 0.01-0.1% 能进入 CNS (4),开发利用主动转运机制和受体介导的从脑内皮细胞 (BEC) 管腔(血液)到管腔外(脑)的转胞吞作用 (RMT) 的新型 IgG 神经治疗药物已成为一个主要研究领域 (4-6)。具体来说,多个研究小组证明,通过工程化结合转铁蛋白受体 1 (TfR) 可显著提高啮齿动物 (7-14) 和非人类灵长类动物 (14, 15) 中枢神经系统大分子递送的效率。尽管这些努力前景看好,但尚不清楚广泛年龄范围内的健康老龄化以及神经退行性疾病(例如阿尔茨海默病 (AD))的存在是否以及如何影响 TfR 介导的血脑屏障运输。在健康成人老龄化过程中,除了血管神经单元的重组 (19) 之外,血脑屏障还会经历各种结构、代谢、炎症和运输相关的变化 (16-18)。这些变化可能会改变 TfR 循环速率和/或用于跨血脑屏障运输 TfR 的内吞机制。此外,BEC 的转录和蛋白质组学变化在 AD 的背景下已得到充分证实 ( 20-24 ),这可能会进一步影响 TfR 靶向疗法向中枢神经系统的输送。此外,在健康老龄化中,由于脑屏障完整性受损和/或功能障碍,中枢神经系统屏障通透性可能会增加 ( 17, 19,25 ) 和 AD ( 19, 26 )。所有这些因素都有可能影响基于 RMT 的 CNS 药物输送的有效性。因此,了解年龄和 AD 如何影响这些情况下的 TfR 介导的运输以及 CNS 通透性对于评估基于 TfR 的 BBB 运输平台的实际效用至关重要,其中许多平台目前正在进行临床评估 ( 27, 28 )。
粘膜头和颈部鳞状细胞癌(HNSCC)经常在晚期阶段被诊断出,由于复发和转移率很高,预后较差[1]。预计2024年预计的大约一百万个新病例,HNSCC的全球死亡率估计达到了同年的50%[2]。早期肿瘤的患者在美国显示出50–60%的五年生存率。免疫检查点抑制剂(ICI)显示出令人鼓舞的结果,可在一部分复发性或转移性疾病的患者中延长生存率。然而,挑战仍然存在,特别是PD-1/PD-L1封锁疗法的有限疗效。PD-L1蛋白表达已被证明其ICI疗法的预测能力有限。新兴证据表明,肿瘤微环境(TME)的复杂表征对于了解相互作用的细胞至关重要。