摘要:蛋白水解靶向嵌合体 (PROTAC) 介导的蛋白质降解促使人们重新思考,并且正处于推动药物发现转变的关键阶段。为了充分利用这项技术的潜力,一种日益增长的模式是使用其他治疗方式丰富 PROTAC。研究人员能否成功地结合两种方式来产生具有扩展特性的多功能 PROTAC?在本期观点中,我们试图回答这个问题。我们讨论了这种可能性如何包含不同的方法,从而产生多靶点 PROTAC、光可控 PROTAC、PROTAC 结合物以及基于大环和寡核苷酸的 PROTAC。这种可能性有望进一步提高 PROTAC 的功效和选择性,最大限度地减少副作用,并击中无法用药的靶点。虽然 PROTAC 已经进入临床研究阶段,但仍必须采取额外步骤来实现多功能 PROTAC 的转化开发。需要更深入、更详细地了解最关键的挑战,以充分利用这些机会并决定性地丰富 PROTAC 工具箱。■ 简介
摘要 背景 急性髓系白血病 (AML) 仍然是一种很难治愈的疾病,因为白血病干细胞 (LSC) 持续存在,对不同的化疗具有抗性,是 80% 未接受同种异体移植的 AML 患者难治/复发 (R/R) 疾病的基础。 方法 在本研究中,我们发现白细胞介素-1 受体辅助蛋白 (IL-1RAP) 蛋白在所有 AML 亚型的 LSC 细胞表面过度表达,并证实与最常见的潜在 AML 靶点相比,它是 AML 中一个有趣且有前途的靶点,因为它不由正常的造血干细胞表达。在建立针对 IL-1RAP 的嵌合抗原受体 (CAR) T 细胞在慢性粒细胞白血病中的疗效概念验证后,我们假设第三代 IL-1RAP CAR T 细胞可以消除无法满足医疗需求的 AML LSC。结果我们首先证明 IL-1RAP CAR T 细胞可以在诊断时和复发时从 AML T 细胞中产生。在体外和体内,我们展示了 IL-1RAP CAR T 细胞对表达不同水平 IL-1RAP 的 AML 细胞系的有效性以及自体 IL-1RAP CAR T 细胞对诊断或复发时 AML 患者原代细胞的细胞毒性。在患者来源的复发性 AML 异种移植模型中,我们证实 IL-1RAP CAR T 细胞能够在外周血中循环并在骨髓和脾脏中迁移,对原发性 AML 细胞具有细胞毒性并可提高总体生存率。结论总之,我们的临床前结果表明,基于 IL-1RAP CAR T 的过继疗法可能是 AML 治疗的一种有前途的策略,值得对这种 CAR T 细胞疗法进行临床研究。
人工智能是一种人工智能技术,其特点是使用算法和统计数据来自我改进程序。机器学习的一个子集是神经网络,它是基于相互连接的神经元或节点的结构,分层结构包括输入层、隐藏层和输出层。这些节点通过基于前一层激活或激活不足的加权连接将信息从一个节点传递到另一个节点。通过操纵神经网络,神经网络可以自动识别和处理来自输入层、隐藏层和输出层的信息。这些节点通过基于前一层激活或激活不足的加权连接将信息从一个节点传递到另一个节点。通过操纵神经网络,神经网络可以自动识别和处理来自输入层、隐藏层和输出层的信息。
前两种自体 CAR-T 细胞疗法 tisagenlecleucel (Kymriah®) 和 axicabtagene ciloleucel (Yescarta®) 于 2017 年获得美国食品药品管理局批准。2020 年,FDA 批准了 brexucabtagene autoleucel (Tecartus TM )。Lisocabtagene maraleucel (Breyanzi®) 和 idecabtagene vicleucel (Abecma®) 于 2021 年获得批准。Ciltacabtagene autoleucel (Carvykti TM ) 于 2022 年 3 月获得批准。这些产品和其他目前正在开发的产品要投入临床实践,需要各方充分了解在癌症患者中使用这些个性化“活”生物制剂的技术和医疗管理。本出版物将解释 CAR T 细胞疗法背后的原理,描述已批准的疗法,总结迄今为止的疗效结果,详细说明已出现的重大风险,提供实用的医疗管理信息,并强调该疗法预期融入临床实践所涉及的一些独特挑战。
T 细胞恶性肿瘤可分为前体(T 急性淋巴细胞白血病/淋巴母细胞淋巴瘤,T-ALL/LBL)和成熟 T 细胞肿瘤,由 28 种不同的实体组成。这些恶性肿瘤大多具有侵袭性,预后较差。复发/难治性 (R/R) 疾病的预后尤其糟糕,进展后预期生存期仅为数月。靶向治疗,例如抗 CD30 免疫毒素 brentuximab vedotin、抗 CD38 抗体 daratumumab 和抗 CCR4 抗体 mogamulizumab 仅对部分 T 细胞肿瘤患者有效。嵌合抗原受体 T 细胞 (CAR-T) 通常用于治疗 R/R B 细胞恶性肿瘤,然而,它们在 T 细胞白血病和淋巴瘤中的应用存在一些特定的障碍,包括自相残杀、恶性细胞转染风险和 T 细胞发育不全。这些问题的解决方案依赖于靶抗原选择、CRISPR/Cas9 或 TALEN 基因编辑、CAR-T 表面抗原表达的翻译后调控和安全开关。使用基因编辑产品观察到染色体结构变化和基因表达的整体变化。我们在 www.clinicaltrials.gov 上注册了 49 项基于 CAR 的疗法研究。它们中的大多数以 CD30 或 CD7 抗原为目标。只有少数研究的结果可用。一般而言,临床反应率超过 50%,但报告的随访时间很短。 CAR 疗法的特定毒性,即细胞因子释放综合征 (CRS),似乎与目标抗原和制造细胞的来源有关。抗 CD7 CAR-T 细胞中的 CRS 比抗 CD30 细胞中更常见,但在大多数患者中症状较轻。在基因编辑的同种异体 CAR-T 细胞后观察到更严重的 CRS。免疫效应细胞相关神经毒性 (ICANS) 较轻且不常见。还观察到先前造血干细胞供体的同种异体 CAR-T 细胞后的移植物抗宿主病 (GvHD)。与抗 CD19 CAR-T 细胞类似,最常见的毒性是血细胞减少症。基于 CAR 的细胞疗法对于 T 细胞恶性肿瘤似乎是可行且有效的,然而,基于 CAR 的产品的最佳设计仍然未知,需要长期随访以评估其真正潜力。
Qidong Hu 1 *, Ying Zhao 1 *, Namir Shaabani 1 *, Xiaoxuan Lyu 1 *, Haotian Sun 1 , Vincent Cruz 1 , Yi Kao 1 , Jia Xu 1 , Amber Fossier 1 , Karen Stegman 1 , Zhihao Wang 1 , Zhenping Wang 1 , Yue Hu 1 , Yi Zheng 1 , Lilian Kyaw 1 , Cipriano Zuluaga 1 , Hua Wang 1 , Hong Pei 1 , Colin Powers 1 , Robert Allen 1 , Hui Xie 1 , Henry Ji 1 , Runqiang Chen 1#
自从批准了多种针对非霍奇金淋巴瘤 (NHL) 的 CD19 靶向嵌合抗原受体 T 细胞 (CAR-T) 疗法以来,治疗手段得到了显著扩展。这些 CAR-T 是针对特定患者的,需要复杂、耗费资源和时间的过程。虽然这看起来很有希望,但由于缺乏可及性、制造延迟和产品质量不稳定,自体 CAR-T 受到限制。为了克服这些问题,来自健康捐赠者的同种异体 (allo) CAR 似乎很有吸引力。这些可以立即作为标准化和优质“现成”即用型产品提供,不受免疫抑制肿瘤微环境和先前治疗的影响,并且可能通过工业化规模生产降低医疗保健利用率。然而,同种异体 CAR 并非没有并发症,需要进行基因组编辑,尤其是使用 αβ T 细胞以避免移植物抗宿主病 (GvHD) 和受体免疫系统的同种异体排斥。TALEN 和 CRISPR 等基因组编辑工具有望开发真正“现成的”通用 CAR,并进一步推动细胞免疫治疗领域的发展。目前有几种同种异体 CAR 处于早期临床试验阶段,初步数据令人鼓舞。需要更长时间的随访才能真正评估这些技术对患者的可行性和安全性。本综述重点介绍开发同种异体 CAR 的策略以及迄今为止在淋巴瘤中的细胞来源和临床经验。
摘要 近 90% 的人类致病突变是由微小的基因变异引起的,有效纠正这些错误的方法至关重要。进行微小 DNA 改变的一种方法是提供单链寡脱氧核苷酸 (ssODN),该单链寡脱氧核苷酸包含一个改变,并在基因组的目标位点处与靶向双链断裂 (DSB) 相结合。将 ssODN 供体与 CRISPR-Cas9 介导的 DSB 结合是引入微小改变的最简化方法之一。然而,在许多系统中,这种方法效率低下,并且会在基因连接处引入不精确的修复。我们在此报告一种使用 ssODN 和 CRISPR-Cas9 的时空定位来改进基因改变的技术。我们表明,通过将 ssODN 模板与反式激活 RNA (tracrRNA) 融合,我们可以恢复精确的基因改变,并且在体外和体内的整合度和精确度都有所提高。最后,我们表明该技术可用于与其他基因编辑工具(如转录激活因子如效应核酸酶)一起增强基因转换。
近年来,线粒体因其在许多重要生物现象中的作用而获得了与疾病相关的生物医学研究的广泛认可,包括代谢、生物合成、细胞存活/死亡程序、信号通路等。1-4因此,在癌症等疾病状态下靶向和扰乱线粒体功能已成为一种新的治疗策略。5-7有趣的是,线粒体含有自己的一组 DNA、RNA 和核糖体,可通过保守的线粒体转录和翻译途径合成 OXPHOS 相关蛋白。8-10因此,破坏与小分子路线相关的线粒体“中心法则”被发现有助于改善治疗结果和克服耐药性。11,12然而,在癌细胞的细胞环境中选择性靶向线粒体仍然是一项艰巨的任务