我们提出了几种算法,用于从量子统计查询 (QSQ) 中学习酉算子,这些算子与 Choi-Jamiolkowski 状态有关。量子统计查询可以捕获具有有限量子资源的学习者的能力,该学习者仅接收测量预期值的噪声估计作为输入。我们的方法取决于一种新技术,该技术用于使用单个量子统计查询估计 Pauli 弦子集上酉的傅里叶质量,从而推广了先前针对均匀量子示例的结果。利用这一见解,我们表明量子 Goldreich-Levin 算法可以通过量子统计查询实现,而该算法的先前版本涉及对酉及其逆的 oracle 访问。此外,我们证明了 O p log nq - juntas 和具有恒定总影响的量子布尔函数在我们的模型中是可有效学习的,并且恒定深度电路可以通过量子统计查询以样本效率的方式进行学习。另一方面,之前针对这些任务的所有算法都需要直接访问 Choi-Jamiolkowski 状态或通过 oracle 访问幺正态。此外,我们的上限意味着可以有效地学习这些类幺正态对局部混乱集合的作用。我们还证明,尽管取得了这些积极成果,但与对 Choi-Jamiolkowski 状态的可分离测量相比,量子统计查询会导致某些任务的样本复杂度呈指数级增长。具体而言,我们展示了学习一类相位 oracle 幺正态的指数下限和测试信道幺正性的双指数下限,以适应我们之前对量子态的设定。最后,我们提出了平均替代模型的新定义,展示了我们的结果在混合量子机器学习中的潜在应用。
私人同时消息(PSM)模型是多阶安全计算(MPC)的非相互作用版本,该版本已经过深入研究以检查安全计算的通信成本。我们考虑其量子对应物,私人同时量子消息(PSQM)模型,并检查量子通信的优势和此模型的事先纠缠。在PSQM模型中,K Parties P 1 ,。。。,P K最初共享一个常见的随机字符串(或在更强的环境中),并且它们具有私人经典输入x 1,。。。,x k。我每个p从私有输入X I和共享随机字符串(纠缠状态)生成量子消息,然后将其发送到裁判R。接收来自K派对的消息,R计算F(x 1,。。。,x k)来自消息。然后,除f(x 1,。。。,x k)作为隐私条件。我们获得了此PSQM模型的以下结果。(i)我们证明,隐私条件不可避免地增加了两党PSQM模型的通信成本,以及Applebaum,Holenstein,Mishra和Shayevitz提出的经典案例[Cryptology 33(3),916-953(2020)]。特别是,我们证明了PSQM协议中通信复杂性的下限(3- o(1)),具有共享随机字符串,用于2 n -pit Input的随机布尔函数,该功能比没有隐私条件的琐事上限2 n大。(ii)我们通过共享纠缠状态的PSQM协议的通信复杂性与共享随机字符串的沟通复杂性之间的两个因子差距进行了两个差距,该系数通过设计具有共享纠缠状态的多阶PSQM协议,用于扩展两方优等函数的总函数。(iii)我们证明了具有共享纠缠状态的PSQM协议的通信复杂性与具有共享的随机字符串之间的指数差距,以提供两方部分功能。
1简介认证和表征量子系统的动态行为是物理学中的基本任务,通常通过量子过程断层扫描(QPT)来实现[CN97]。但是,QPT非常有资源密集型。例如,所有已知的方法用于学习任意n- Qubit统一操作员的经典描述(给定的黑框查询访问),都需要对单位[GJ14]进行ω(4N)查询。另一方面,如果我们要测试统一是否具有特定的特定属性,则可以显着降低这种复杂性。这自然会导致我们考虑理论计算机科学中研究良好的财产测试框架[GOL10,BY22]。属性测试的设置(在统一动态的背景下,与本文有关)如下:给定甲骨文访问1对单位运算符U及其逆U†的设置,我们的目标是确定您是否具有某个属性或与每个单位运算符的“远处” 2,使用少量的属性使用对Oracles的呼叫来满足每个属性。我们还允许算法以一些较小的概率输出不正确的答案。在此模型中已经研究了单一动力学的几种自然特性,例如通勤性,对角度,保利(Pauli)的成员身份等。,我们将有兴趣的读者转到Montanaro和De Wolf在量子属性测试[MDW16]的调查第5.1节中,以获取更多信息。像Montanaro和Osborne [Mo10]一样,我们将统一的K -Junta称为量子K -Junta,以将其与K -Junta Boolean函数(或简单的Boolean K -Junta)区分开来。我们对这里进行测试感兴趣的属性是作为k -junta:我们说,如果仅对n个qubits的k起作用,则n qubit unition U是k -junta(对于正式定义,请参见definition 2.2)。作为一种特殊情况,量子k -juntas的概念捕获了研究的良好测试问题,如果布尔函数f:{0,1} n→{0,1}是k -junta(cf.问题1.3)。
经典复杂性理论中的一个著名成果是 Savitch 定理,该定理指出非确定性多项式空间计算 (NPSPACE) 可以通过确定性多空间计算 (PSPACE) 来模拟。在这项工作中,我们开始研究 NPSPACE 的量子类似物,记为 Streaming-QCMASPACE (SQCMASPACE),其中指数长的经典证明被流式传输到多空间量子验证器。我们首先证明 Savitch 定理的量子类似物不太可能成立,因为 SQCMASPACE = NEXP 。为了完整起见,我们还引入了具有指数长流式量子证明的伴随类 Streaming-QMASPACE (SQMASPACE),并证明 SQMASPACE = QMA EXP(NEXP 的量子类似物)。然而,我们的主要重点是研究指数长的流式经典证明,接下来我们将展示以下两个主要结果。第一个结果表明,与经典设置形成鲜明对比的是,当允许指数长度的证明时,量子约束满足问题(即局部哈密顿量)的解空间始终是连通的。为此,我们展示了如何通过一系列局部幺正门模拟单位超球面上的任何 Lipschitz 连续路径,代价是增加电路尺寸。这表明,如果演化速度足够慢,量子纠错码无法检测到一个码字错误地演化为另一个码字,并回答了 [Gharibian, Sikora, ICALP 2015] 关于基态连通性问题的未决问题。我们的第二个主要结果是,任何 SQCMASPACE 计算都可以嵌入到“非纠缠”中,即嵌入到具有非纠缠证明器的量子约束满足问题中。正式地,我们展示了如何将 SQCMASPACE 嵌入到 [Chailloux, Sattath, CCC 2012] 的稀疏可分离汉密尔顿问题(1 / 多承诺差距的 QMA(2) 完全问题)中,代价是随着流式证明大小的扩大而扩大承诺差距。作为推论,我们获得了第一个系统构造,用于在任意多证明者交互式证明系统上获得 QMA (2) 型上限,其中 QMA (2) 承诺差距随着交互式证明中的通信位数呈指数增长。我们的构造使用了一种新技术来利用解缠结来模拟二次布尔函数,这在某种意义上允许历史状态对未来进行编码。
过去 20 年,我们在创建、控制和测量超导“人造原子”(量子比特)和存储在谐振器中的微波光子的量子态方面取得了令人瞩目的实验进展。除了作为研究全新领域强耦合量子电动力学的新型试验台之外,“电路 QED”还定义了一种基于集成电路的全电子量子计算机的基本架构,该集成电路的半导体被超导体取代。人造原子基于约瑟夫森隧道结,它们的尺寸相对较大(约毫米),这意味着它们与单个微波光子的耦合非常强。这种强耦合产生了非常强大的状态操纵和测量能力,包括创建极大(> 100 个光子)“猫”态和轻松测量光子数奇偶性等新量的能力。这些新功能使基于在微波光子的不同 Fock 态叠加中编码量子信息的“连续变量”量子误差校正新方案成为可能。在我们尝试构建大规模量子机时,我们面临的最大挑战是容错能力。如何用大量不完美的部件构建出一台近乎完美的机器?二战后,冯·诺依曼开始在经典计算领域探讨这个问题 [ 1 ] 。1952 年,他在加州理工学院的一系列讲座中(这些讲座于 1956 年发表 [ 2 ] ;在耶鲁大学的西利曼讲座中,他未能出席,但其手稿在他死后出版 [ 3 ] 。除了思考当时粗糙、不可靠的真空管计算机外,他还对大脑中复杂神经元网络的可靠计算能力着迷。克劳德·香农 (Claude Shannon) 也对这个问题非常感兴趣 [ 5 ] ,他的硕士论文首次证明开关和继电器电路可以执行任意布尔逻辑运算 [ 4 ] 。冯·诺依曼证明(并不十分严格),一个可由 L 个可靠门网络计算的布尔函数,也可以由 O(L log L)个不可靠门网络可靠地(即以高概率)计算。Dobrushin 和 Ortyukov [6] 严格证明了这一结果。若要进一步了解该领域,可参考 [7-10] 等相关著作。现代观点将使用不可靠设备的可靠计算问题与香农信息论 [11] 联系起来,该理论描述了如何在噪声信道上进行可靠通信。如图 1 所示,在香农信息论中,只有通信信道被视为不可靠的,输入处的编码和输出处的解码被认为是完美的。通过使用对为香农通信问题设计的代码字进行操作的电路模块并经常检查它们,不可靠的电路也可以执行可靠的计算。诀窍在于找到区分模块输出和输入差异的方法,这些差异是故意的(即由于模块正确计算了输入的预期功能)还是错误的 [ 10 ] 。除了与信息论的这种关键联系之外,与控制论也有重要的联系,如图 2 所示。量子计算机是一个动态系统,尽管噪音和错误会不断发生,我们仍试图控制它。诺伯特·维纳创立的经典控制理论处理容易出错的系统(传统上称为“工厂”,实际上可能代表汽车制造厂或化工厂)。如图 3 所示,传感器连续测量工厂的状态,控制器分析这些信息并使用它来(通过“执行器”)向工厂提供反馈,以使其稳定可靠地运行。鲁棒控制系统能够处理传感器、控制器和执行器单元也可能由不可靠的部件制成的事实。我们会发现这是一个有用的观点,但在思考量子系统的控制时,我们必须处理许多微妙的问题,因为我们知道对量子态的测量会通过测量“反向作用”(状态崩溃)扰乱状态。
AES的重要性,它是研究最多的密码之一[3,11,15,17,18],在量子电路的有效合成的背景下。这些实现可以在某些涉及AE的对称键基原始素的量子攻击中使用[4,9,9,13,16]。在本文中,我们构建了一些Qubits的AE的量子电路,涉及的技术可能会为AES的量子电路提供更多灵感的量子和电路深度交易。可以与cli效率 + t门集合进行任何经典矢量布尔函数的量子甲骨文,该函数由Hadamard Gate(H),相位栅极(S),对照栅极(cnot)和非cli虫t Gate组成。有一些关于合成最佳可逆电路的作品,例如可逆布尔函数。Shende等。[22]考虑使用不使用栅极,cnot门和to奥里门的3位可逆逻辑电路的合成。Golubitsky等。[10]提出了一个最佳的4位可逆电路,该电路由NOT GATE,CNOT GATE,TO to oli Gate和4位TO奥利门组成。综合量子电路实现的目的是减少量子的深度和数量[3,11,17,18]。根据我们当前对耐断层量子计算的理解,t -Depth的度量可能是最重要的。但是,在构建实用量子计算机之前,降低量子数量的成本的方法也非常有意义,并且它可能会提供更多灵感的量子和深度交易。在[8]中,Datta等。 在[15]中,Jaques等。在[8]中,Datta等。在[15]中,Jaques等。最近,AE的效率量子电路的构建引起了很多关注。提出了AE的可逆实现。提出了一种将AES量子电路的深度宽度成本度量最小化的方法。在[11]中,Grassl等。提出了针对最低量子数的AE的量子电路。在[17]中,Kim等。 在AES上展示了一些时间记忆交易。 在[3]中,Almazrooie等。 提出了AES-128的新量子电路。 通过利用S-box的经典代数结构[5],Langenberg等。 在[18]中展示了一种构建AES S-box的量子电路的新方法,该方法基于Langenberg等人。 提出了AES-128的有效量子电路。 与Almazrooie等人相比。 和Grassl等。 的估计值,Langenberg等人提出的电路。 可以同时减少量子数的数量和to oli大门。 Langenberg等。 的工作表明,我们可以通过构造更效率的AES经典电路来构建AE的改进的量子电路。 有几项关于如何减少经典环境中AE的门数的作品[1、7、14、19、28]。 在[14]中,Itoh和Tsujii提出了用于计算F 2中乘法逆的塔架架构,这是设计S-Box的紧凑硬件实现的强大技术。 通过使用塔场技术,[7]中的CANIGRES显示了一种计算输入的乘法逆的有效方法。在[17]中,Kim等。在AES上展示了一些时间记忆交易。在[3]中,Almazrooie等。提出了AES-128的新量子电路。通过利用S-box的经典代数结构[5],Langenberg等。在[18]中展示了一种构建AES S-box的量子电路的新方法,该方法基于Langenberg等人。提出了AES-128的有效量子电路。与Almazrooie等人相比。和Grassl等。的估计值,Langenberg等人提出的电路。可以同时减少量子数的数量和to oli大门。Langenberg等。 的工作表明,我们可以通过构造更效率的AES经典电路来构建AE的改进的量子电路。 有几项关于如何减少经典环境中AE的门数的作品[1、7、14、19、28]。 在[14]中,Itoh和Tsujii提出了用于计算F 2中乘法逆的塔架架构,这是设计S-Box的紧凑硬件实现的强大技术。 通过使用塔场技术,[7]中的CANIGRES显示了一种计算输入的乘法逆的有效方法。Langenberg等。的工作表明,我们可以通过构造更效率的AES经典电路来构建AE的改进的量子电路。有几项关于如何减少经典环境中AE的门数的作品[1、7、14、19、28]。在[14]中,Itoh和Tsujii提出了用于计算F 2中乘法逆的塔架架构,这是设计S-Box的紧凑硬件实现的强大技术。通过使用塔场技术,[7]中的CANIGRES显示了一种计算输入的乘法逆的有效方法。在[6]中,Boyar和Peralta通过使用塔式字段实施,为AES中的S-Box提出了一个深度16电路。