基因编辑技术的进步。它可以通过识别细菌免疫系统并破坏入侵病原体基因,用于植物防御机制以抵御病原体的攻击。通过 CRISPR/Cas9 整合在植物育种方面的进步有助于开发包括对细菌和病毒疾病的遗传抗性的品种。如果在 F1 代中分离出 Cas9/sgRNA 转基因,未来的作物世代可以获得 CRISPR/Cas9 介导的转基因抗性。Cas9/sgRNA 转基因分离使 CRISPR/Cas9 可安全用于植物育种。尽管 CRISPR/Cas9 已被证明是彻底改变植物育种和开发各种抗病品种的绝佳工具,但它对许多植物生理过程的影响仍有待彻底研究。关键词:CRISPR/Cas9;基因编辑;基因组;植物育种;抗性育种。1. 介绍一个主要的挑战是保护作物品种免受当前病虫害的侵害,并改良作物品种以提高产量。抗病作物品种的短缺是农民遭受农业减产的主要原因。为了培育抗病作物并确保粮食安全,培育抗病、抗虫和高产作物大有裨益 [31]。抗性育种利用包括转基因植物基因组编辑在内的各种尖端分子方法,旨在通过提高作物对病虫害的抵抗力来改良作物。借助转基因技术,育种者可以进行物种间杂交,将来自无关植物和其他生物的基因添加到作物中 [31]。为了满足营养需求,不断增长的人口(由于全球人口增长,预计到 2050 年将达到 98 亿)必须生产过量的食物 [4]。植物病原体包括细菌、病毒、真菌和寄生虫,威胁着全球粮食安全 [2,30]。为了提高作物产量并满足世界粮食需求,提高植物的抗性非常重要 [11]。众所周知,植物和疾病之间总是在不断地相互保护 [16,42]。为了抵御感染,植物进化出了“模板触发免疫 (PTI)”和“效应物触发免疫 (ETI)”[17]。PTI 通常由“病原体相关分子模式 (PAMP)”通过“模式识别受体 (PRR)”快速激活 [32,25]。抗性育种在很大程度上依赖于遗传多样性。利用抗性育种理念的一个重要组成部分是开发抗性并为有害基因增加遗传多样性 [43]。这些发现导致了各种基因编辑方法的使用,以创造遗传变异。CRISPR(成簇的规则间隔回文重复序列)/Cas9(CRISPR 相关蛋白)细菌免疫
肺部疾病,例如慢性阻塞性肺部疾病,哮喘,社区获得性肺炎,囊性纤维化和COVID-19,是世界第二大死亡原因,成为了重大的健康挑战。因此,纳入纳米颗粒制剂(NP)的发育纳入了含有抗生素或抗病毒药的微粒系统(MPS),是改善这些肺部感情治疗的有前途的方法。政治丙酮酸(PCL)NP可能封装疏水性药物。因此,在这项工作中,我们开发了PCL NP,其磷脂封装了阿奇霉素(AZM)和respdivir(RDV),该溶剂通过乳液扩散蒸发而获得。nps导致在Zeta电势之间的动态光和-4.94和-5.06 eV之间的传播中,在动态光和-4.94和-5.06 eV之间的传播中,平均直径在184-208 nm和多分散性(PDI)之间,保持稳定6个月至4°C。随后,通过喷雾干燥以获得MPS干燥。喷涂干燥参数的优化导致100°C输入温度,64°C输出温度,600 L/h雾化流量,4.55 ml/min的流量和系统吸入70%,产量为63%。通过UV-VIS和HPLC光谱评估的封装效率分别为含有AZM和RDV的配方率为83%和87%。结果表明MPS是多孔球形结构,特定表面积为3.95 g/m 2。激光光衍射表明90%的颗粒为4.06和4.11 µm。粉末制剂的表征是根据形态,特定的表面积,粒径,化学结构,结晶度和扫描电子显微镜,物理学,激光衍射,红外光谱,X射线衍射和热分析的。FTIR分析表明,没有不必要的反应。衍射模式和量热测试表明,AZM和封装的RDV分散在固体聚合基质中。具有单个实习级联撞击剂的体外测试和多个阶段用于了解呼吸道不同部位的颗粒沉积,而39-42%的颗粒对应于可透气的透气分数。磁盘扩散测试表明,含有纳米封装的配方AZM对金黄色葡萄球菌和肺炎链球菌的抗菌作用保持抗菌作用,并具有抑制卤素≥18mm。HUVEC,HFF1和BEAS-2B细胞系表明含有AZM的分散体没有细胞毒性。关于含有RDV的NP,LDH细胞死亡试验表明,在感染SARS-COV-2的VERO E6细胞中使用免费或封装药物和抗病毒药测试之间没有显着差异。因此,两种含有AZM或RDV的配方都有治疗肺部疾病的潜力,并且开发的微观引血系统由一个可靠的肺部递送平台组成,也可以适用于其他抗生素和抗病毒药。
您可能知道: • 基因技术可以帮助改良农作物和牲畜,使其具有抗病、营养更佳等特性,并有助于控制气候变化的影响 • 有些人认为基因技术干扰了自然,因此认为存在潜在风险 • 新西兰目前对基因技术的使用实行严格的监管。政府打算引入一些变化,允许在新西兰更多地使用基因技术种植粮食,他们提出,任何变化都将对人类健康和环境提供强有力的保护 考虑到这一点,以下哪个选项与您关于新西兰应如何使用基因技术种植粮食的看法最接近?
上下文:自身免疫性疾病(AID)涉及免疫系统错误地攻击人体组织,造成慢性炎症和损害,并影响全球数百万的人。类风湿关节炎(RA)是一种这样的疾病,其特征是由中性粒细胞(PMN)等免疫细胞驱动的持续关节炎症。PMN抗病,但它们的不受控制的激活会损害组织,并与RA有关。在PMN的保护性与有害影响之间保持严格调节的平衡至关重要。然而,PMN在RA中的作用尚不清楚。在缓解和爆发过程中区分PMN轮廓可以增强我们的理解,改善患者分层并支持个性化的RA治疗。
摘要。精油(EOS)源自植物,表现出多种生物学活性,包括抗病毒药,抗癌和抗菌作用。本综述对其化学成分和生物学特性进行了彻底的检查,这对于药物,医疗和农业应用至关重要。EOS对各种细菌和真菌(包括抗药性菌株)表现出有效的抗菌作用,并表现出对流感,疱疹和HIV的有希望的抗病毒活性。此外,它们显示出作为抗癌剂的潜力,诱导细胞凋亡和抑制细胞增殖。尽管有好处,但诸如低溶解度和稳定性之类的挑战限制了它们的使用。诸如纳米塑料之类的创新策略旨在增强其功效。关键词:生物活性,抗菌剂,精油,抗癌活性。
摘要:臭氧疗法是一种治疗方式,在系统或局部使用臭氧治疗各种疾病。对细胞代谢的免疫炎症和刺激调节的可能性及其抗菌,抗病毒药,抗寄生虫,抗植物,使臭氧治疗对医学和牙科领域都有吸引力。因此,这篇叙述性综述的目的是解决和阐明臭氧及其实际功效的生物学特性,动作机制以及主要的临床应用,并指出使用的局限性。可以得出结论,臭氧治疗是一种有效且有前途的支持方法,但是仍然需要制定特定的方案,并澄清其在某些领域的使用。关键字:Ozoniotherapy;康复;免疫调节;牙科。
摘要:蚊子转基因和基因驱动技术为开发有前途的新型媒介传播疾病预防工具提供了基础,这些工具要么抑制野生蚊子种群,要么降低其传播病原体的能力。许多关于具有强大性别、组织和阶段特异性表达谱的基因的调控 DNA 和启动子的研究支持开发可以控制蚊媒疾病的新工具和策略。尽管可用的调控元件列表很重要,但只有有限的一组可以可靠地驱动时空表达。在这里,我们回顾了我们在蚊子中表达有益基因和其他基因的能力方面的进展,并强调了开发新的蚊虫控制和抗病策略所需的信息。
摘要:生物技术的快速发展促进了我们对家畜重要经济性状候选基因生物学功能的认识。基因编辑分子育种极大地改变了家畜育种方式。通过基因编辑和胚胎操作,可以很容易地培育出具有设计的经济性状或抗病性状的品种。随着这一快速发展的进程,基因编辑家畜的安全性评估引起了公众和监管机构的关注。本文综述了基因编辑在家畜生产性能改善、抗病性、生物反应器、动物福利和环境友好性等方面的研究进展,并讨论了基因编辑技术在家畜育种中的局限性和未来发展。
在美国,食品和药物管理局(FDA)总共批准了八种治疗慢性乙型肝炎病毒(HBV)感染的药物(图1)。这些药物被广泛地分类为免疫调节剂(干扰素和果皮剂)或抗病毒剂(核苷和核苷酸类似物)。[1,2,3]选择用于初步治疗患有慢性HBV感染的个体的药物时,应称量许多因素:治疗的安全性和功效,耐药持续性,治疗持续时间,治疗成本以及其他因素,例如肝病疾病严重程度或怀孕。治疗决定还需要考虑个人偏好。本讨论将在决定使用口腔抗病毒与Peginterferon之间以及在各种可用的口服抗病毒选择中选择初始HBV疗法时进行审查。