自 20 世纪 90 年代末以来,SAAB 一直在对几种无人驾驶飞行器 (UAV) 概念进行初步研究,但并未将其用于飞行演示。2001 年,决定启动 SHARC 技术演示项目:一个小型专业团队负责开发、制造和飞行测试一个无人机系统,包括航空电子系统和地面控制站 (GCS),该系统稍后可在稍后开发的第二个演示器(称为 FILUR)中重复使用(见图1)。由于预算有限,并且从仪表化小尺寸飞机的飞行测试中获得良好的内部经验,因此决定 SHARC 技术演示器应为原始 SHARC 设计的 1:4 比例。该项目的主要目标之一是测试军用无人机的适航过程,即使使用小尺寸飞机也可以实现这一目标。甚至测试演示者的精益开发流程的目标也可以通过这种方式实现。SHARC 项目于 2001 年启动,不到一年后首次飞行,
据德克萨斯高等教育协调委员会统计,从 2015 年到 2019 年,德克萨斯州的各所大学为航空航天技术研究投入了超过 18 亿美元。德克萨斯大学奥斯汀分校和德克萨斯 A&M 大学合计投入了该领域总支出的一半以上。德克萨斯 A&M 科珀斯克里斯蒂分校被选为美国联邦航空管理局认可的全美仅有的七个无人机系统 (UAS) 试验场之一。孤星 UAS 项目开展的研究对于将 UAS 融入国家空域至关重要。研究集中在多个领域,包括授权空域内的运行安全和数据收集、UAS 适航标准、指挥和控制链路技术、UAS 控制站布局的人为因素问题以及检测和规避技术。德克萨斯州的各所大学还领导着高超音速高速飞行研发。德克萨斯农工大学 (Texas A&M University) 正在领导一个价值 1 亿美元的研究联盟,而德克萨斯大学阿灵顿分校 (University of Texas at Arlington) 正在与私营部门合作开发高超音速风洞技术。 航空航天制造
摘要。确定用于油棕收获预测应用的无人机系统配置是实现种植园产量最大化的重要一步。本文的目的是展示如何使用无人机系统生成可用于预测作物的高分辨率图像。研究分为两个阶段:无人机系统配置分析和数字图像处理以预测作物。无人机系统配置分析包括机身、推进器、航空电子设备和地面控制站。机载系统使用由 Pixhawk 航空电子设备、电动机和 20.2 兆像素数码相机控制的 X-8 机身。无人机系统用于在北苏门答腊省 Labuhan Batu Utara 的一个 6 年生油棕种植园上生成高分辨率数字图像。该无人机系统可生成高分辨率数字图像,可用于计算植物数量。然后将此特定区域中的植物数量用作预测作物的输入。6 年生油棕种植园的估计产量平均为每公顷每年 50.5 吨。这个结果大于棕榈油种植园管理公司的估计结果,即每公顷每年 23 吨。
将来,将在许多不同的地区应用无人机(无人驾驶汽车)的使用。继续对无人机的研究可以通过其在灾难响应,人道主义援助,环境监测,基础设施内置,改善运输和交付系统以及科学研究中的应用中受益。通过利用无人机技术并使技术更容易进入,我们可以在各个领域提高效率,安全性和可及性,同时解决全球挑战并改善个人和社区的福祉。由于地面站和无人机之间所需的复杂通信,使用无人机开始开发所需的进入知识可能很高。本报告的目的是通过对一些可用的通信协议,选择协议并使用所述协议来开发和实施界面来降低进入障碍,以开发和实施界面,以便在无人机上进行地面控制站和伴随计算机之间的通信。对无人机的通信协议的调查表明,广泛使用的Mavlink协议是该实施的最佳合适的通信协议。使用上述协议和UAV飞行控制器进行的开发和迭代过程,导致创建可以用作所需界面的工件。
执行摘要 • 陆军于 2012 年 7 月 30 日至 8 月 17 日在加利福尼亚州爱德华兹空军基地和加利福尼亚州欧文堡国家训练中心 (NTC) 进行了灰鹰 IOT&E。• 陆军根据 DOT&E 批准的测试和评估总体规划和测试计划进行了 IOT&E。• DOT&E 正在完成超低速率初始生产 (BLRIP) 报告,支持计划于 2013 年 4 月进行的灰鹰全速率生产决定。在该报告中,DOT&E 得出结论,配备灰鹰的部队能够有效操作 MQ-1C 系统,并有可能为作战部队提供有效的支持,但陆军需要继续开发战术、技术和程序;培训;以及将这种能力有效整合到作战行动中所需的理论。灰鹰系统在操作上是合适的。灰鹰通过为公司移动期间运输地面控制站的车辆驾驶室提供装甲能力来满足其机组人员保护生存能力要求。灰鹰飞机在中高威胁环境中无法生存。
摘要:遥控飞机系统 (RPAS) 是军事组织用来帮助人类脱离危险境地并允许在严酷和不适宜的环境中作业的工具。为了支持根据加拿大“强大、安全、参与 2017”国防政策采购 RPAS 机队,加拿大皇家空军 (RCAF) 在 RCAF 联合无人监视和目标获取系统项目(随后由 RCAF RPAS 项目取代)下资助了加拿大国防研究与发展局 - 多伦多研究中心,对与地面控制站 (GCS) 机组人员控制 RPAS 的表现有关的人为因素 (HF) 问题进行了初步调查。本文回顾了 2014 年至 2017 年期间进行的加拿大皇家空军研究计划,该计划讨论了 RPAS 操作中的 HF 问题以及培训如何与决策、技能和知识以及任务准备的 HF 属性相关联。此外,本文还介绍了一种培训需求分析方法和分析,确定了 RPAS 机组人员的基本能力(表示为每个机组人员执行各自任务所需的知识、技能和能力)。最后,本文讨论了研究实验和评估能力以支持 RPAS 操作员培训和 GCS 适航认证的工作。
› 能够消除 FAA 第 107 条规定下的各种威胁 › 非常适合保护大型户外聚会(如体育场和音乐会)免受多种同时发生的威胁 › 旨在防止违禁品走私和知识产权 (IP) 盗版 › 没有非法 RF 干扰,不会干扰手机、WiFi 或任何其他合法通信系统 › 完全受控地远离保护区进行处置,几乎消除了附带损害的可能性 › 超高最高速度和极快的响应时间 › 平民友好、不引人注目的操作 › 与现有安全措施和各种检测系统集成,包括雷达、EO/IR、声学和其他新兴技术 › 专门制造的重型机身,电子设备和控制装置专为容错而设计,在美国设计和制造 › 捕获目标的大小/重量可在飞行中立即传达给安全团队 › 地面控制站和拦截器馈送集成到现有的 CCTV 系统中 › 可扩展 - 100 多个拦截器可以同时攻击 100 多个目标 › 可与授权飞机互操作 ›快速、无需熟练的重新加载操作 › 符合 ITAR 标准,ECCN 9A991.b › 美国和国际专利正在申请中
SESAR 联合行动已经对“无人机”的使用提出了见解,无人机是指无人驾驶飞机系统 (UAS) 或无人驾驶飞行器 (UAV);这包括遥控飞机系统 (RPAS),作为其子集。无人机系统 (UAS) 的机载组件是无人驾驶飞行器 (UAV),包括两种基本类型:遥控飞机系统 (RPAS),这是一种由“飞行员”从地面控制站 (GCS) 操作遥控飞机 (RPA) 的 UAS;以及没有遥控飞行员的 UAS,或自主飞行器。在本文件中,术语“无人机”本质上是一个外行术语,是指所有类型的 UAS。此预测延伸至 2050 年,因此包括许多带有不确定性的假设。由于固有的不确定性,所有数字均已四舍五入,应按其数量级进行解释。此外,该预测是作为欧洲在该主题上的起点而制定的,预计不会详尽涵盖所有潜在形式的无人机。特别关注了无人机在欧洲天空中的运行,因此,没有预测用于工业和住宅设施内的任务和无人机类型。此外,所有货币数字都是名义上的,不包括通货膨胀影响的调整。本报告中显示的所有经济指标和无人机单位总数均反映了欧洲需求
1969 年 7 月 20 日,马德里附近的弗雷斯内迪利亚斯控制站收到了人类从月球表面发来的第一条消息。“这是人类自身的一小步,却是人类的一大步”,这是阿波罗 11 号任务指挥官尼尔·阿姆斯特朗写下的历史名言。如今,在阿姆斯特朗完成这一史诗级成就的 50 年之后,人类的太空探索被普遍认为是一项极其令人兴奋和有吸引力的挑战,也是改善地球人类生活的科学技术进步的强大助推器。尽管有一些批评(少数,但意义重大)质疑其高昂的成本(Rinaldi 2016),但事实确实如此。在月球和火星上建立永久定居点正日益成为一项现实的事业。经过十年的成功火星探测,欧空局和美国宇航局,以及最近来自亚洲发展中国家的机构,都在努力推动载人航天任务,首先是登月,然后是火星。欧洲航天局 (ESA) 坚持这些目标,并坚决支持和参与这些计划,西班牙是其积极成员之一。
• 无刷直流电机,变频器控制,提供可配置的速度控制 • 低功耗 • 绝对位置检测 • 可挂锁的手动手轮 • 带霍尔效应(非接触式)本地控制站的 LCD 显示屏,带有开-停-关和本地-远程选择旋钮以及连续位置指示 • 显示非侵入式设置和执行器参数 • 5+1 个二进制输入(24 VDC、48 VDC 和 60 VDC) • 8 个可配置数字输出 - ESD 就绪、打开和关闭位置、运行关闭和运行打开方向、过扭矩、选择开关处于本地或远程位置 • 微处理器连续监控所有机械传动系统组件,处于通电和故障安全模式,本地显示本地警报和远程信号 • PST 自动测试模式可将阀门关闭 5%,同时远程开启和关闭功能仍然有效 • 可调故障安全时间使用无摩擦装置(无磨损)的涡流制动器来保护阀门 • 用于现场接线的单独端子室可防止电子设备暴露在环境中 • UL、CSA、ATEX 和 IECEx 认证• 维护间隔长 – 10,000 至 20,000 个运行小时(5 年),艾默生交付后 10 年 • 两年保修