视觉问题回答(VQA)是一项具有挑战性的任务,需要通过关系推理对图像和问题进行跨模式理解,从而导致正确答案。为了弥合这两种方式之间的语义差距,以前的作品着重于所有可能对的单词区域对齐,而无需更多地关注相应的单词和对象。同样处理所有对,而无需考虑关系一致性,这是模型的性能。在本文中,为了对齐关系对并整合VQA系统的解释性,我们提出了一个跨模式的关系构建网络(CRRN),以掩盖不一致的注意力图,并突出相应单词对的全部潜在比对。具体来说,我们提出了两个相关性掩码,用于模式间和模式内突出显示,从而推断出图像中句子或区域中越重要的单词。可以通过掩盖未对齐的关系来增强一致对的关注相互关系。然后,我们提出了两个新颖的损失L CMAM和L SMAM,并具有明确的超级视觉,以捕获视觉和语言之间的细粒度相互作用。我们进行了彻底的实验来证明有效性并实现了GQA基准的竞争性绩效,以达到61.74%。
摘要:至关重要的是要问,代理如何仅使用通过习惯性感觉运动经验获得的部分世界模型来生成行动计划,从而实现目标。尽管许多现有的机器人研究都使用了前向模型框架,但存在高自由度的泛化问题。当前的研究表明,采用生成模型的预测编码 (PC) 和主动推理 (AIF) 框架可以通过学习低维潜在状态空间中的先验分布来开发更好的泛化,该先验分布表示从习惯性感觉运动轨迹中提取的概率结构。在我们提出的模型中,学习是通过推断最佳潜在变量以及突触权重来最大化证据下限来进行的,而目标导向规划是通过推断潜在变量来最大化估计下限来完成的。我们提出的模型在模拟中使用简单和复杂的机器人任务进行了评估,通过为正则化系数设置中间值,证明了在有限的训练数据下学习中具有足够的泛化能力。此外,比较模拟结果表明,由于先验学习将运动计划的搜索限制在习惯轨迹范围内,因此所提出的模型在目标导向规划中优于传统的前向模型。
Tai,T。C.(2010)。 小提琴,键盘和唱歌指令对空间能力的影响和Tai,T。C.(2010)。小提琴,键盘和唱歌指令对空间能力的影响和
减轻奖励黑客攻击 - 由于其学习目标中的缺陷或错误的特征,AI系统的表现不佳 - 在构建有能力且一致的模型方面面临着一个关键的挑战。我们表明,我们可以通过使用另一个观察模型的经验链(COT)推理的LLM来监视诸如OpenAI O3-Mini之类的前沿推理模型,例如OpenAI O3-Mini。COT监视可以比单独监视剂的动作和输出更有效,我们进一步发现,比O3-Mini(即GPT-4O)弱的LLM可以有效地监视更强大的模型。因为COT监视器可以有效地检测漏洞,因此自然要问是否可以通过将COT监视器直接纳入代理商的训练目标来抑制这些漏洞。我们表明,将COT监测器集成到强化学习奖励中确实可以在低优化制度中产生更有能力,更一致的代理,但我们发现,通过过多优化,代理商学习了混淆的奖励黑客攻击,将其隐藏在COT中,同时仍然表现出很大的奖励奖励率。由于很难分辨出COTS何时变得混淆,因此可能有必要通过不直接将强大的优化压力直接施加到经营链上来缴纳可监视性税,从而确保COTS保持可监视且可用于检测未对准的行为。
摘要 - 通过人工智能(AI)基于人工智能(AI)基于人工智能的沟通优化仍然是基础的基础。作为第六代(6G)通信网络追求全赛纳里奥的覆盖范围,在复杂的极端环境中的选择提出了未经证实的挑战。这些环境的动态性质,结合物理约束,使AI解决方案(例如深度强化学习(DRL))很难为培训过程获得有效的奖励反馈。但是,许多现有的基于DRL的网络优化研究通过理想化的环境设置忽略了这一挑战。受到生成AI(Genai)(尤其是扩散模型)的强大功能的启发,在捕获复杂的潜在分布时,我们引入了一种新颖的基于扩散推理的奖励成型方案(着装),以实现强大的网络优化。通过对观察到的环境状态进行调节和执行动作,着装利用扩散模型的多步降级过程作为深层推理的一种形式,逐渐完善了潜在表示,以产生有意义的辅助奖励信号,以捕获网络系统模式。此外,连衣裙设计用于与任何DRL框架的无缝集成,允许连衣裙辅助的DRL(装扮得出)即使在极端的网络环境下也可以实现稳定而有效的DRL培训。实验结果表明,穿着的DRL大约达到1。礼服代码可从https://github.com/nice-hku/dress获得。与基线方法相比,在稀疏奖励无线环境中的收敛速度比其原始版本快于其原始版本,并且在多个一般DRL基准环境中的性能得到了显着改进。
人工智能(AI)越来越多地在现代医学中起着至关重要的作用,尤其是在临床决策支持中。本研究比较了两个OpenAI推理模型O3-Mini和O3-Mini-High的性能,以回答从MEDQA-USMLE数据集中得出的900个小儿临床问题。评估的重点是确定其在小儿诊断和治疗决策中的有效性的准确性,响应时间和一致性。结果表明,与O3-Mini相比,O3-Mini-High的精度更高(90.55%比88.3%)和更快的响应时间(64.63秒对71.63秒)。卡方检验证实了这些差异在统计上是显着的(x²= 328.9675,p <0。00001))。错误分析表明,O3-Mini-High纠正了O3-Mini的错误,反之亦然,但两种模型都共享了61个常见错误,这表明训练数据或模型体系结构中的固有局限性。此外,还考虑了模型之间的可访问性差异。虽然在先前的研究中对DeepSeek-R1进行了评估,但提供了不受限制的免费访问,Openai的O3模型具有消息限制,可能会影响其在资源受限环境中的适用性。未来的改进应旨在减少共享错误,在保持效率的同时优化O3-Mini的准确性,并提高O3-Mini-High以提高性能。实施一种利用这两种模型优势的合奏方法可以提供更强大的AI驱动临床决策支持系统,尤其是在时间敏感的儿科场景中,例如紧急护理和新生儿重症监护病房。
在许多科学领域中,研究人员面临评估复杂统计模型的挑战,即可能的计算函数在计算上是棘手的,或者非常昂贵的计算。这导致了无似然推理方法的发展和日益普及,这为参数估计和模型比较提供了强大的替代方案。这些方法利用模拟,通过观察到的数据的比较来推断与模型在各种参数设置下产生的模拟结果的比较。在贝叶斯推论中,这些包括近似贝叶斯计算(Rubin,1984; Pritchard et al。,1999; Sisson等。,2018年),贝叶斯合成的可能性(Wood,2010; Price等,2018年),神经可能和后验估计(Rezende and Mohamed,2015年; Papamakarios,Sterratt和Murray,2019年)。在频繁的环境中,在Gourieroux,Monfort and Renault(1993)的基础工作之后,近年来才看到无可能无可能推理的进步(Masserano等人。,2022; Xie and Wang,2022年; Dalmasso等。,2024)。本研究的重点是频繁推断,针对基于模拟的模型和非标准的规律性条件的校准置信区间和区域的构建。建议的方法提供了统一的
图2。使用BERT衍生特征与(a)预测和(b)材料属性分类的模型性能比较模型性能。SMA,Ti合金和HEA的10倍MAE图与广泛的平行测试中所选特征数量(1-8)的函数相同。蓝线使用传统的经验特征(例如电负性,原子半径)表示模型性能,而红线表示BERT衍生的材料特征。检查的特性包括相变温度(MP,AP),转化焓(ΔH),屈服强度(σs),终极拉伸强度(σb),Vickers硬度(VH)和伸长率(EL)。Classification tasks include binary classification of Solid Solution (SS) vs. Non-Solid Solution (NSS), ternary classification of phase forms (Face-Centered Cubic (FCC), Body-Centered Cubic (BCC), and FCC-BCC mixed), and quaternary classification of SMA phases (B19'-B2, B19'-B19-B2, B19'-R-B2, B19-B2, and R-B2)。bert衍生的特征始终在几乎所有属性和特征数量上产生较低的预测误差,从而突出了它们捕获合金组成和属性之间内在关系的卓越能力。阴影区域代表跨平行测试的标准偏差。
摘要 — 低位宽量化神经网络 (QNN) 通过减少内存占用,支持在受限设备(如微控制器 (MCU))上部署复杂的机器学习模型。细粒度非对称量化(即,在张量基础上为权重和激活分配不同的位宽)是一种特别有趣的方案,可以在严格的内存约束下最大限度地提高准确性 [1]。然而,SoA 微处理器缺乏对子字节指令集架构 (ISA) 的支持,这使得很难在嵌入式 MCU 中充分利用这种极端量化范式。对子字节和非对称 QNN 的支持需要许多精度格式和大量的操作码空间。在这项工作中,我们使用基于状态的 SIMD 指令来解决这个问题:不是显式编码精度,而是在核心状态寄存器中动态设置每个操作数的精度。我们提出了一种基于开源 RI5CY 核心的新型 RISC-V ISA 核心 MPIC(混合精度推理核心)。我们的方法能够完全支持混合精度 QNN 推理,具有 292 种不同的操作数组合,精度为 16 位、8 位、4 位和 2 位,而无需添加任何额外的操作码或增加解码阶段的复杂性。我们的结果表明,与 RI5CY 上的基于软件的混合精度相比,MPIC 将性能和能效提高了 1.1-4.9 倍;与市售的 Cortex-M4 和 M7 微控制器相比,它的性能提高了 3.6-11.7 倍,效率提高了 41-155 倍。索引术语 —PULP 平台、嵌入式系统、深度神经网络、混合精度、微控制器
