使用0.01%的相对丰度截止的应用导致大多数物种级分类方法的提高F1得分(图。3a.i)。值得注意的是,在ATCC模拟社区的情况下,四种MM方法中的三种,MM_Fangorn-G,MM_Fangorn-R和MM_MIRROR在ONT和PACBIO数据集中均显示出大幅度的F1分数。但是,对于MCAP和MCGD社区,仅在ONT数据集中观察到这一显着增加。专门应用于PACBIO数据的QB方法在ATCC社区的所有五个相对丰度截止值中保持了一致的F1分数。但是,对于MCAP和MCGD社区的相同方法最初在NO(0%)和0.001%的截止值下表现出一致的F1分数,随后逐渐下降了0.001%的临界值。通常,在三个模拟社区中,相对丰度截止的实施没有
限制性片段。为了制备微克量的 Hin 375、Hin 550 和 Hae 790(见图 1),将含有示踪量 lambda [32p]_ DNA(2 X 106 cpm)的 5 mg 纯化 lambda DNA 用 Hin(7)或 Hae(6)消化,乙醇沉淀,重悬于 500 ul DNA 缓冲液(5 mM NaCi、10 mM Tris-HCl,pH 7.4、1 mM EDTA)中,在含有 TBE(1)缓冲液的 3.5% 聚丙烯酰胺凝胶(6 mm X 20 cm X 40 cm)上以 320 V 电泳 23 小时。通过放射自显影定位含有适当限制性片段的凝胶部分,切除,并通过苯酚提取去除 DNA(10)。如前所述,从含有 32P 的 DNA 中分离出高比活度标记的限制性片段(2)。通过聚丙烯酰胺凝胶电泳确定每个片段的链长(1、2)。
收到2024年2月2日; 2024年5月7日接受;于2024年6月7日发布:1 Doherty应用微生物基因组学,微生物学和免疫学系,墨尔本大学Peter Doherty感染与免疫学研究所,792 Elizabeth Street,Melbourne VIC 3000,澳大利亚澳大利亚墨尔本街792号; 2爱尔兰科克摩尔帕克的Teagasc食品研究中心; 3爱尔兰科克大学科克大学科克大学科克大学的APC微生物组和微生物学院; 4 Vistamilk SFI研究中心,爱尔兰科克Teagasc Moorepark。*信件:John G. Kenny,John。Kenny@teagasc。IE关键字:Amplicons;数据库;长阅读测序;微生物组;纳米孔; rRNA。缩写:COV,变异系数; ESV,精确的序列变体; Grond,基因组衍生的核糖体操纵子数据库; GTDB,基因组分类数据库; IQR,四分位数范围;它的内部转录垫片; NR,非冗余; ONT,牛津纳米孔技术; RRN,16S-ITS-23S rRNA操纵子; rRNA,核糖体RNA; SD,标准偏差; Taxlca,集群中所有序列的最低祖先; Taxmaj,最低的分类学等级,其中所有序列中的所有序列都具有简单的多数协议; Taxrep,集群代表序列的源基因组分类学; UMIS,唯一的分子标识符。数据语句:文章或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用两个补充表。001255©2024作者
1美国北卡罗来纳州北卡罗来纳州Chapel山的遗传学系,内布拉斯加州大学食品科学与技术系Nebraska Food Food Center,NEBRASKA大学 - 林肯大学,美国东北68588,美国林肯市,美国北卡罗来纳州北卡罗来纳州北卡罗来纳州北卡罗来纳州北卡罗来纳州北卡罗来纳州北卡罗来纳州林肯市林肯市。伊斯兰堡,巴基斯坦,5计算机科学系,国立计算机和新兴科学大学(NUCES),伊斯兰堡,巴基斯坦,6,6感染与免疫计划,生物医学发现研究所和莫纳什大学微生物学系,澳大利亚3800,VIC 3800,VIC 3800,VIC 3800,澳大利亚7学院考文垂,英国1美国北卡罗来纳州北卡罗来纳州Chapel山的遗传学系,内布拉斯加州大学食品科学与技术系Nebraska Food Food Center,NEBRASKA大学 - 林肯大学,美国东北68588,美国林肯市,美国北卡罗来纳州北卡罗来纳州北卡罗来纳州北卡罗来纳州北卡罗来纳州北卡罗来纳州北卡罗来纳州林肯市林肯市。伊斯兰堡,巴基斯坦,5计算机科学系,国立计算机和新兴科学大学(NUCES),伊斯兰堡,巴基斯坦,6,6感染与免疫计划,生物医学发现研究所和莫纳什大学微生物学系,澳大利亚3800,VIC 3800,VIC 3800,VIC 3800,澳大利亚7学院考文垂,英国
摘要 抗 CRISPR(Acr)蛋白由(原)病毒编码,以抑制其宿主的 CRISPR-Cas 系统。编码 Acr 和 Aca(Acr 相关)蛋白的基因通常共定位以形成 acr-aca 操纵子。在这里,我们提出 AcaFinder 作为第一个 Aca 基因组挖掘工具。AcaFinder 可以 (i) 使用关联理论 (GBA) 预测 Acas 及其相关的 acr-aca 操纵子;(ii) 使用 HMM(隐马尔可夫模型)数据库识别已知 Acas 的同源物;(iii) 获取潜在原噬菌体、CRISPR-Cas 系统和自靶向间隔区 (STS) 的输入基因组;(iv) 提供独立程序(https://github.com/boweny920/AcaFinder)和 Web 服务器(http://aca.unl.edu/Aca)。 AcaFinder 被用于挖掘 16,000 多个原核生物和 142,000 个肠道噬菌体基因组。经过多步过滤,鉴定出 36 个高置信度的新 Aca 家族,是已知 12 个 Aca 家族的三倍。七个新的 Aca 家族来自人类主要肠道细菌(拟杆菌门、放线菌门和梭杆菌门)及其噬菌体,而大多数已知的 Aca 家族来自变形菌门和厚壁菌门。通过分析 Acrs 和 Acas 的操纵子共定位,揭示了它们之间复杂的关联网络。相同的 aca 基因可以与不同的 acr 基因重组,反之亦然,从而形成不同的 acr-aca 操纵子组合,这在进化过程中似乎很常见。
摘要 CRISPR-Cas 系统为原核宿主提供了针对移动遗传元件的适应性免疫。许多噬菌体编码抑制宿主防御的抗 CRISPR (Acr) 蛋白。由于 Acr 蛋白体积小、序列多样性高,因此其鉴定具有挑战性,迄今为止仅对有限数量的 Acr 蛋白进行了表征。在本研究中,我们报告了一种由 φCD38-2 艰难梭菌噬菌体编码的新型 Acr 蛋白 AcrIB2,它能有效抑制宿主 IB 型 CRISPR-Cas 系统的干扰,并可能充当 DNA 模拟物。大多数艰难梭菌菌株含有两个 cas 操纵子,一个编码全套干扰和适应蛋白,另一个仅编码干扰蛋白。出乎意料的是,我们证明只有部分操纵子是干扰所必需的,并且会受到 AcrIB2 的抑制。
理学硕士 I 期 MM:75 分子生物学单元 1:基因组的结构和组织(8 小时)染色质组织 - 组蛋白和 DNA 相互作用组、染色质结构、核小体、染色质组织和重塑、染色体、异染色质和真染色质、扭转应力、DNA 拓扑结构 - 链接数、扭曲、扭动、超螺旋、拓扑异构体。第二单元:DNA复制、修复和重组(8 小时)DNA复制模型,Meselson 和 Stahl 实验,DNA聚合酶,病毒、细菌和真核生物中的 DNA 复制,复制叉,复制的校对和保真度,末端复制问题和端粒酶,复制抑制药物,DNA损伤剂,DNA修复机制(核苷酸切除修复、碱基切除修复、错配修复、重组修复、双链断裂修复、转录偶联修复、重组——同源、非同源和位点特异性重组)第三单元:基因表达和调控(8 小时)原核和真核基因的结构、调控区域、转录因子、转录机制、RNA聚合酶、RNA加工结构和不同 RNA 类型的功能、起始复合物的形成、延长、终止;操纵子概念-乳糖操纵子、色氨酸操纵子、arb操纵子、𝜆-阻遏物、lexA阻遏物、噬菌体的溶源性和溶解性循环、核糖开关、转录抑制剂。
摘要CRISPR-CAS系统为原核宿主提供了针对移动遗传元件的适应性免疫力。许多噬菌体编码抑制宿主防御的抗危机(ACR)蛋白。ACR蛋白的识别由于其尺寸小和高序列多样性而具有挑战性,并且迄今为止仅表征有限的数字。在这项研究中,我们报告了一种新型ACR蛋白Acrib2的发现,该蛋白是由φCD38-2梭状芽胞杆菌艰难梭菌噬菌体编码的,可有效抑制宿主的I型I型CRISPR-CAS系统的干扰,并可能充当DNA模拟物。大多数艰难梭菌菌株包含两个CAS操纵子,一个编码一套全套干扰和适应蛋白,另一种仅编码干扰蛋白。出乎意料的是,我们证明了只有部分操纵子才能进行干扰,并且会受到Acrib2的抑制作用。
我们开发了Ont-Cappable-Seq,这是一种专门的长阅读RNA测序技术,允许使用纳米孔测序[1]对主要的,未经处理的RNA进行端到端测序。我们应用了Ont-Cappable-seq研究一组噬菌体,提供了病毒转录起始位点,终结器位点和复杂的操纵子结构的全面基因组图,这些结构细调了基因表达。许多发现的启动子和终结者都是新颖的,尚未被识别或预测。新的启动子和终结器的强度差异很大,使其成为新合成DNA电路的理想选择。在程度上,由Ont-Cappable-Seq提供的更精致的操纵子组织可以给基因功能提供新的提示,并启用更好的知情噬菌体工程方法。ont-cappable-seq是一种更好地了解噬菌体生物学和推动合成生物学的有力方法。
摘要:随着合成生物学领域的扩展,必须成长和训练科学,技术,工程和数学(STEM)从业人员的需求。但是,缺乏动手示威的机会导致了机会和实践的不平等。此外,提供的内容有一个差距,使学生能够制造自己的生物工程系统。为了应对这些挑战,我们开发了四个稳定的无细胞生物传感教育模块,这些模块可以通过简单地将水和DNA添加到冻干的非致病性大肠杆菌的原油提取物中起作用。我们介绍了活动和支持课程,以教授LAC操纵子的结构和功能,剂量响应性行为,对生物传感器输出的考虑以及用于监测水中环境污染物的“建立自己的”活动。我们在教室里和在家中没有专业实验室设备的K-12老师和130名高中生,在他们的家中驾驶了这些模块。这项工作有望催化获得交互式合成生物学教育机会。关键词:无细胞,合成生物学,教育,LAC操纵子,生物技术■简介