着色性干皮病 (XP) 是一种由核苷酸切除修复 (NER) 途径(AG 组)或跨损伤合成 DNA 聚合酶 η (V) 基因突变引起的遗传性疾病。XP 与皮肤癌风险增加有关,对于某些群体来说,与一般人群相比,风险可高达数千倍。在这里,我们分析了来自五个 XP 组的 38 个皮肤癌基因组。我们发现 NER 的活性决定了皮肤癌基因组间突变率的异质性,并且转录偶联的 NER 超越了基因边界,降低了基因间突变率。XP-V 肿瘤中的突变谱和使用 POLH 敲除细胞系的实验揭示了聚合酶 η 在无错误绕过(i)罕见的 TpG 和 TpA DNA 损伤、(ii)嘧啶二聚体中的 3' 核苷酸和(iii)TpT 光二聚体中的作用。我们的研究揭示了 XP 皮肤癌风险的遗传基础,并对减少一般人群中紫外线诱发的突变的机制提供了见解。
在一般人群中,饮食是汞暴露的主要来源,主要是通过食用鱼类。掠食性鱼类(例如淡水中的梭子鱼、海水中的金枪鱼和剑鱼)的汞含量可能是大多数其他鱼类中平均汞含量的 50 倍以上。在鱼类中检测到的总汞中有 70% 到 90% 是以甲基汞的形式存在的。美国食品药品监督管理局 (FDA) 负责监管商业鱼类。法规要求市场上销售的鱼类中汞含量不得超过百万分之一 (ppm)。许多州对运动用鱼的建议含量较低。其他潜在的饮食暴露来源包括食用食鱼鸟类和哺乳动物以及在使用含汞杀虫剂的地区食用野禽。1971-72 年冬季,数千名伊拉克人因食用用甲基汞杀菌剂处理过的小麦种子制成的自制面包而中毒。
简介和摘要 人工智能将在未来几年在国家和国际安全中发挥重要作用。因此,美国政府正在考虑如何控制与人工智能相关的信息和技术的传播。由于通用人工智能软件、数据集和算法不是控制的有效目标,因此注意力自然会落在实现现代人工智能系统所需的计算机硬件上。现代人工智能技术的成功依赖于几年前无法想象的规模的计算。训练领先的人工智能算法可能需要一个月的计算时间,成本为 1 亿美元。这种巨大的计算能力由计算机芯片提供,这些芯片不仅包含最大数量的晶体管(可以在开(1)和关(0)状态之间切换的基本计算设备),而且还可以根据需要量身定制,以高效执行人工智能系统所需的特定计算。这种尖端的、专门的“AI 芯片”对于大规模实施 AI 具有成本效益至关重要;尝试使用较旧的 AI 芯片或通用芯片提供相同的 AI 应用程序的成本可能要高出数十倍甚至数千倍。生产尖端 AI 芯片所需的复杂供应链集中在美国和少数盟国民主国家,这一事实为出口管制政策提供了机会。本报告详细介绍了上述故事。它解释了 AI 芯片的工作原理、它们为何激增以及它们为何重要。它还说明了为什么尖端芯片比老一代芯片更具成本效益,以及为什么专门用于 AI 的芯片比通用芯片更具成本效益。作为这个故事的一部分,该报告调查了半导体行业和 AI 芯片设计
核糖体分析 (Ribo-Seq) 揭示了目前注释的编码序列 (CDS) 之外的数千个非规范核糖体翻译位点,从而改变了我们对人类基因组和蛋白质组的理解。保守估计至少有 7000 个非规范 ORF 被翻译,乍一看,这有可能将人类蛋白质 CDS 的数量扩大 30%,从约 19,500 个注释的 CDS 增加到超过 26,000 个注释的 CDS。然而,对这些 ORF 的进一步审查提出了许多问题,即它们中有多少部分真正产生了蛋白质产物,又有多少部分可以根据对该术语的传统理解理解为蛋白质。进一步复杂化的是,已发表的非规范 ORF 估计值相差约 30 倍,从几千到几十万。这项研究的总结让基因组学和蛋白质组学界既对人类基因组中新编码区域的前景感到兴奋,又在寻找如何继续的指导。在这里,我们讨论了非规范 ORF 研究、数据库和解释的现状,重点是如何评估给定的 ORF 是否可以说是“蛋白质编码”。
随着出生率下降和老龄化人口比例增加导致劳动人口减少,工厂、物流、医疗、城市服务机器人、安防摄像头等社会各个领域都需要先进的人工智能 (AI) 处理,例如识别周围环境、做出行动决定和控制动作。系统需要在各种程序中实时处理先进的人工智能 (AI) 处理。特别是,系统必须嵌入到设备中,以便快速响应不断变化的环境。AI 芯片在嵌入式设备中执行先进的 AI 处理时功耗更低,并且严格限制发热量。
中国樱桃(Prunus pseudocerasus)是中国主要的核果作物之一,具有十分重要的意义。然而,由于缺乏高质量的基因组资源,人工改良其性状和遗传分析具有挑战性,这主要归因于难以解析其四倍体和高度杂合的基因组。在此,我们使用 PacBio HiFi、Oxford Nanopore 和 Hi-C 组装了品种‘诸暨短柄饼’的染色体水平、单倍型解析基因组,包含 993.69 Mb,组装成 32 条假染色体。单倍型内比较分析揭示了广泛的基因组内序列和表达一致性。系统发育和比较基因组分析表明,P. pseudocerasus 是一个稳定的同源四倍体物种,与野生的 P. pusilliflora 密切相关,两者大约在 1834 万年前分化。与其他李属植物类似,樱桃也经历了一次常见的全基因组复制事件,该事件发生在大约 1.3996 亿年前。由于果实硬度低,樱桃不适合长距离运输,从而限制了其在中国的快速发展。在成熟果实阶段,樱桃品种‘诸暨短柄梨’的硬度明显低于樱桃品种‘黑珍珠’。硬度的差异归因于果胶、纤维素和半纤维素含量变化的程度。此外,比较转录组分析发现了两个参与果胶生物合成的基因 GalAK-like 和 Stv1,这可能是造成‘诸暨短柄梨’和‘黑珍珠’果实硬度差异的原因。PpsGalAK-like 和 PpsStv1 的瞬时转化会增加原果胶含量,从而提高果实硬度。我们的研究为中国樱桃功能基因组学研究和重要园艺性状的提升奠定了坚实的基础。
通过胚胎活检对非整倍性(PGT-A)的植入前基因检测有助于通过评估胚胎倍性来进行胚胎选择。然而,临床实践需要考虑胚胎活检,潜在的镶嵌和不准确的整个胚胎的侵入性。这产生了对不损害胚胎或提高治疗成本的改进诊断实践的重要临床需求。因此,越来越重视开发非侵入性技术以增强胚胎的选择。这些创新包括非侵入性PGT-A,人工智能(AI)算法和非侵入性代谢成像。后者通过代谢辅助因子的自动荧光来测量细胞代谢。值得注意的是,高光谱显微镜和荧光寿命成像显微镜(FLIM)揭示了非整倍性胚胎和人类纤维细胞中独特的代谢活性特征。这些方法表明在区分多倍体和非整倍体胚胎方面已经表现出很高的精度。因此,本综述讨论了与PGT-A相关的临床挑战,并强调了对新颖溶液(例如代谢成像)的需求。此外,它探讨了针对细胞行为和新陈代谢的影响,在这项研究领域中为未来的研究方向提供了观点。
图 3. Bioanalyzer 2100 DNA 12000 右侧尺寸选择日期。A1:通过右侧去除步骤去除的 DNA 片段 – 0.5 倍。B1:通过右侧去除步骤去除的 DNA 片段 – 0.6 倍。C1:通过右侧去除步骤去除的 DNA 片段 – 0.7 倍。D1:通过右侧去除步骤去除的 DNA 片段 – 0.8 倍。E1:通过右侧去除步骤去除的 DNA 片段 – 1.0 倍。F1:通过右侧去除步骤去除的 DNA 片段 – 1.4 倍。A2:右侧尺寸选择后回收的 DNA 片段 – 0.5 倍/2.0 倍。B2:右侧尺寸选择后回收的 DNA 片段 – 0.6 倍/1.9 倍。C2:右侧尺寸选择后回收的 DNA 片段 – 0.7 倍/1.8 倍。 D2:右侧尺寸选择后回收的 DNA 片段 — 0.8×/1.7×。E2:右侧尺寸选择后回收的 DNA 片段 — 1.0×/1.5×。F2:右侧尺寸选择后回收的 DNA 片段 — 1.4×/1.1×。
利用人工智能(AI)的抗体药物发现支持技术MALEXA-LI的研究成果已被Nature Research出版的综合科学杂志《Scientific Reports》接受。 MALEXA-LI提出了一种抗体氨基酸序列,其结合强度比现有抗体高出1,800倍以上。 在CHUGAI DIGITAL VISION 2030的指导下,我们将继续致力于通过AI药物发现大幅改善药物发现过程。
最近的微生物基因组测序工作揭示了大量含有整合酶的移动遗传元件,这些整合酶可能成为有用的基因组工程工具。大型丝氨酸重组酶 (LSR),例如 Bxb1 和 PhiC31,是噬菌体编码的整合酶,可以促进噬菌体 DNA 插入细菌基因组。然而,之前仅鉴定了少数 LSR,它们在人类细胞中的效率有限。在这里,我们开发了一个系统的计算发现工作流程,通过识别数千个新的 LSR 及其同源 DNA 附着位点。我们通过在人类细胞中对 LSR 进行实验表征来验证这种方法,从而产生了三类根据其效率和特异性彼此区分的 LSR。我们识别了可有效整合到与人类基因组正交的合成安装附着位点的着陆垫 LSR、具有计算可预测伪位点的人类基因组靶向 LSR,以及可以单向整合货物的多靶向 LSR,其效率与常用转座酶相似,特异性更高。每个类别的 LSR 在人类细胞中都进行了功能鉴定,总体而言,其质粒重组率比 Bxb1 高出 7 倍,基因组插入效率为 40-70%,载物大小超过 7 kb。总体而言,我们建立了一个范例,用于大规模发现微生物重组酶并直接从微生物测序数据重建其靶位。该策略提供了丰富的资源,包括 60 多种经过实验鉴定的 LSR,这些 LSR 可以在人类细胞中发挥作用,以及数千种额外的候选 LSR,可用于大负载基因组编辑,而不会暴露 DNA 双链断裂。