1 列日大学 GIGA 研究所器官发生与再生实验室 (LOR),比利时列日 4000; ratish.raman@uliege.be 2 GIGA CRC 体内成像,列日大学,Sart Tilman,4000 列日,比利时; m.external@uliege.be(人与生物圈计划); christian.degueldre@uliege.be (光盘); alain.plenevaux@uliege.be (AP) 3 拉里博伊西及雷医院,罕见骨病参考中心,INSERM U1132,巴黎西岱大学,F-75010 巴黎,法国; communication@hotmail.com(CCdS); agnes.ostertag@inserm.fr (AO); corinne.collet@aphp.fr(抄送); martine.cohen-solal@inserm.fr (MC-S.) 4 肌肉骨骼创新研究实验室,列日大学医学跨学科研究中心,比利时列日 4000; christelle.sanchez@uliege.be (客户服务); yhenrotin@uliege.be (YH) 5 UF de Génétique Moléculaire,Hospital Robert Debré,APHP,F-75019 Paris,法国 * 通信地址:m.muller@uliege.be;电话:+32-473993074
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 2 月 15 日发布。;https://doi.org/10.1101/2022.02.13.480249 doi:bioRxiv 预印本
药理学实验表明,神经肽可以有效调整神经元活性并调节运动输出模式。但是,它们在塑造先天运动方面的功能通常仍然难以捉摸。例如,先前已证明生长抑素在脑室中注射时会诱导运动,但是当在体外沐浴在脊髓中时,可以抑制虚拟的运动。在这里,我们通过在斑马鱼中淘汰生长抑素1.1(SST1.1)来研究生长抑素在先天运动中的作用。我们在数百个突变体和对照兄弟姐妹幼虫中自动化并仔细分析了数十万次爆发的运动运动学。我们发现SST1.1的缺失不会影响声学 - 卵形逃生反应,而是导致异常探索。SST1.1突变幼虫在更高速度的距离上游动并进行更大的尾弯,表明生长抑素1.1抑制了自发的运动。我们的研究完全表明,生长抑素1.1天生有助于减慢自发的运动。
K01AG049152,R01AG062588,R01AG057234,P30AG062422,P01AG019724,U19AG079774,P01AG19772403,P5023501,P5023501,K23AG0727272727272727272727272727682727314,R0000735514,R000014,R000014,RRO000016827271,RRO00007AG06,RO00 rc0073514,RRRY00AG0682 1ZIAAG000539-01; NIH未诊断的疾病计划,未诊断的疾病网络; Hudsonalpha基金会记忆和移动基金;雨水慈善基金会; NIH国家药物滥用研究所,赠款/奖励号:75N95022C00031; Larry L. Hillblom基金会,赠款/奖励号:2016-A-005-SUP; Bluefield项目可以治愈额颞痴呆;阿尔茨海默氏症协会;全球大脑健康研究所;法国基金会;玛丽·奥克利基金会; NIH壁内培训和教育办公室; Chan-Zuckerberg倡议的神经退行性挑战网络; NIH国家神经系统疾病与中风研究所,赠款/奖励号:U54NS123985; NIH国家通用医学科学研究所,赠款/奖励号:FI2GM142475
斑马贻贝(Dreissena Polymorpha)和Quagga贻贝(Dreissena ugensis或Dreissena roustriformis ugensis),统称为dreissenids,是东欧Ponto-Caspian地区的淡水贻贝。他们于1980年代后期到达伊利湖,可能是在跨波亚船的压载水中(McMahon,1996)。dreissenids可以在船只,电动机和拖车中生存几天的干燥条件。他们还搭便车上的水族馆植物,例如在PET和水族馆商店提供的苔藓球(美国地质调查局,2021年)。斑马贻贝是第一个到达并建立的人。存在两个物种的地方,Quagga贻贝经常取代斑马贻贝,因为它们更大。自入侵以来,斑马贻贝已经扩散到31个州和Quagga贻贝到18个州(美国地质调查局,2023年)。Bilge和Livewell水的娱乐船和运输船的压载水一直是传播的主要向量。
乳腺癌 (BC) 是全球女性中最常见的恶性肿瘤。尽管 BC 的治疗方法多种多样,但其结果并不令人满意,尤其是在三阴性乳腺癌 (TNBC) 患者中。高效肿瘤学的主要挑战之一是实现评估肿瘤分子基因型和表型的最佳条件。因此,迫切需要新的治疗策略。动物模型是 BC 的分子和功能表征以及开发靶向 BC 疗法的重要工具。斑马鱼作为一种有前途的筛选模型生物,已广泛应用于患者来源的异种移植 (PDX) 的开发,以发现新的潜在抗肿瘤药物。此外,在斑马鱼胚胎/幼虫中生成 BC 异种移植可以描述肿瘤的生长、细胞侵袭以及肿瘤与宿主体内的系统相互作用,而不会对移植的癌细胞产生免疫原性排斥。有趣的是,斑马鱼可以进行基因操作,其基因组已被完全测序。斑马鱼的遗传学研究描述了与 BC 致癌作用有关的新基因和分子途径。因此,斑马鱼体内模型正在成为转移研究和发现 BC 治疗新活性剂的绝佳替代方案。在此,我们系统地回顾了斑马鱼 BC 模型在致癌作用、转移和药物筛选方面的最新前沿进展。本文旨在回顾斑马鱼 (Danio reiro) 在生物标志物识别和药物靶向的临床前和临床模型中的作用的现状,以及 BC 个性化医疗的发展。
耐用的打印机是必不可少的,但是内部的软件将使它们保持行动。这就是为什么我们在打印机中构建斑马DNA,使工人能够保持可见性,最佳设备正常运行时间并轻松响应不断变化的工作流程。这是一套软件和打印机操作系统功能,它利用了我们从数千个用例中学到的所有内容,以确保您的打印机发挥最高的潜力。Zebra DNA工具和打印机的应用程序可以使您在远程管理工具,更高的安全性和正在进行的更新中迈出一步,即使您的业务需求也可以在整个生命周期内进行优化的性能。
CRISPR/Cas9 基因组编辑技术极大地促进了多种生物体内和体外基因的靶向失活。在斑马鱼中,只需将向导 RNA (gRNA) 和 Cas9 mRNA 注射到单细胞阶段胚胎中,即可快速生成敲除系。在这里,我们报告了一种简单且可扩展的基于 CRISPR 的载体系统,用于斑马鱼的组织特异性基因失活。作为原理证明,我们使用带有 gata1 启动子的载体来驱动 Cas9 表达,以沉默与血红素生物合成有关的 urod 基因,特别是在红细胞谱系中。Urod 靶向在斑马鱼胚胎中产生了红色荧光红细胞,重现了在 yquem 突变体中观察到的表型。虽然 F0 胚胎表现出嵌合基因破坏,但这种表型在稳定的 F1 鱼中似乎非常明显。该载体系统构成了空间控制基因敲除的独特工具,大大拓宽了斑马鱼功能丧失研究的范围。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人发布于2021年2月2日。 https://doi.org/10.1101/2021.02.01.429280 doi:biorxiv preprint
摘要 淀粉样蛋白前体 (APP) 是一种富含大脑的单次跨膜蛋白,可水解加工成多种产物,包括淀粉样蛋白-β (A b ),它是阿尔茨海默病 (AD) 的主要驱动因素。尽管 APP 的过度表达和外源性 A b 都会导致睡眠变化,但 APP 加工是否在调节睡眠中起内源性作用尚不清楚。在这里,我们证明 APP 加工成 A b 40 和 A b 42 在斑马鱼中是保守的,然后描述了功能丧失的 appa 和 appb 突变体的睡眠/觉醒表型。appa 突变的幼虫觉醒活动减少,而缺乏 appb 的幼虫夜间睡眠时间缩短。用 g -分泌酶抑制剂 DAPT 治疗也缩短了夜间睡眠时间,而 BACE-1 抑制剂 lanabecestat 延长了睡眠时间。脑室内注射 P3 也缩短了夜间睡眠时间,这表明 Appb 蛋白水解加工的适当平衡是斑马鱼维持正常睡眠所必需的。