开发微电子电路时,一个常见的设计范例是“标准单元”的概念。由于 PMOS 和 NMOS 晶体管在集成电路上的制造方式,微电子电路设计人员将每种晶体管类型放在自己的行中会很有帮助。由于 PMOS 晶体管的源极通常连接到正电源轨或另一个 PMOS 晶体管的漏极,因此将所有 PMOS 放在顶行很有帮助(见图 2)。相反,NMOS 晶体管的源极几乎总是连接到另一个 NMOS 的漏极或接地。这就是为什么 NMOS 晶体管总是在底部的原因。
摘要 — 工艺变化和器件老化给电路设计人员带来了巨大的挑战。如果不能准确了解变化对电路路径延迟的影响,就无法正确估计用于防止时序违规的保护带。对于先进技术节点,这个问题更加严重,因为晶体管尺寸达到原子级,既定裕度受到严重限制。因此,传统的最坏情况分析变得不切实际,导致无法容忍的性能开销。相反,工艺变化/老化感知静态时序分析 (STA) 为设计人员提供了准确的统计延迟分布。然后可以有效地估计较小但足够的时序保护带。但是,这种分析成本高昂,因为它需要密集的蒙特卡罗模拟。此外,它需要访问机密的基于物理的老化模型来生成 STA 所需的标准单元库。在这项工作中,我们采用图神经网络 (GNN) 来准确估计工艺变化和器件老化对电路内任何路径延迟的影响。我们提出的 GNN4REL 框架使设计人员能够快速准确地进行可靠性评估,而无需访问晶体管模型、标准单元库甚至 STA;这些组件都通过代工厂的训练整合到 GNN 模型中。具体来说,GNN4REL 是在 FinFET 技术模型上进行训练的,该模型根据工业 14 nm 测量数据进行了校准。通过对 EPFL 和 ITC-99 基准以及 RISC-V 处理器的大量实验,我们成功估计了所有路径的延迟退化(尤其是在几秒内),平均绝对误差低至 0。01 个百分点。
越来越多的机器人和自动驾驶汽车与操作员一起工作。但是,标准化方面的新功能是什么?该领域的未来有什么影响?您想找出您自己的活动特别关注的标准吗?在联邦公共服务经济的支持下,Sirris启动了该行业4.0标准单元,以告知比利时企业(本质上是中小企业)现有标准和未决出版物。工业环境中机器人技术领域最相关的标准是由ISO协调的,特别是通过其技术委员会ISO/TC 299“机器人技术”和ISO/TC 199“机械安全性”。由ISO/TC110“工业卡车”开发的电力运营工业卡车领域的标准化本文档提供了对当前适用标准的见解及其预计的Evolution
来自成像方式的误差以及由于与 IC 样品的物理相互作用而直接导致的误差。由于设计实践和制造 IC 所用材料而在 RE 工作流程中引入的噪声被列为“ 代工厂/节点技术特定 ” 误差源。最后,由于人为相互作用而发生的误差列在“ 人为因素 ” 下。讨论这些噪声源的来源文献还介绍了抑制它的方法。例如,可以通过在 IC 芯片表面沉积薄层导电材料(如碳或铂)来防止与成像相关的误差源中的传导 [18, 11]。为避免冗余,这里不再详细讨论除版图特定误差源之外的各个噪声源。版图特定误差源(例如特征尺寸和接近度)是版图综合和所谓设计规则的直接结果。复杂的几何结构只有在成像方式的分辨率能力范围内才能成像。类似地,彼此靠近放置的结构也可能无法有效解析。简而言之,除非使用较小的视野或高放大倍数,否则这些特征可能会被 SEM 截断。表 1 显示了讨论每个错误源及其解决方法的著作。引用的著作中还提供了全面的模型验证。无法抑制或预防的错误源作为合成图像生成工作流程的一部分,以填充数据集。另一个值得关注的是,用于生成数据集的设计布局选择有限。任何数字设计的基本构建块都是标准单元。它们代表基本逻辑门、更复杂的门(例如全加器)和寄存器,并在整个设计中重复出现。流行的商业 IC 设计工具和开源标准单元库(均由 Synopsys 授权用于生成数据集)用于合成和布局布线高级加密标准 (AES) 设计。这些工具分别遵循 90nm 和 32/28nm 工艺设计套件 (PDK) 中指定的设计规则。
在本次会议中,我们将探讨 VLSI 设计和单元优化的前沿技术。在第一篇论文中,作者讨论了一种合成面积最优多行标准单元的最佳方法,集成了晶体管折叠、行分区和晶体管布局。第二篇论文介绍了 ATPlace2.5D,这是一种用于大规模 2.5D-IC 的分析热感知芯片布局框架。它平衡了线长和温度。在第三篇论文中,作者介绍了 3D SRAM 阵列的新方法:字线和位线折叠。这些设计显著减少了占用空间,提高了速度和能效。最后,第四篇论文提出了 MAXCell,这是一种使用任意时间 MaxSAT 的 PPA 导向标准单元布局优化框架,超越了线长优化研究。
本文通过引入Hetarch(用于设计异质量子系统的工具箱)来实现异质FTQC设计的挑战,并使用它来探索异性设计方案。使用分层方法,我们可以将量子算法分解为较小的操作(类似于经典应用程序内核),从而大大简化了设计空间和所得的权衡。专门针对超导系统,我们设计了由多种超导设备组成的优化异质硬件,将物理约束抽象成设计规则,使设备能够将设备组装到针对特定操作的标准单元中。最后,我们提供了一个异质的设计空间探索框架,该框架将模拟负担减少了10个或更多倍,并使我们能够将最佳的设计点提高。我们使用这些技术来设计用于纠缠蒸馏,误差校正和代码传送的超导量子模块,将错误率降低2。6×,10。7×和3。0×与均质系统相比。
摘要 — 旁道攻击使绕过电路中的加密组件成为可能。电源旁道 (PSC) 攻击因其非侵入性和经过验证的有效性而受到特别关注。除了专注于传统技术的现有技术之外,这是首次在 PSC 攻击背景下研究新兴的负电容晶体管 (NCFET) 技术的工作。我们在设计时实施了用于 PSC 评估的 CAD 流程。它利用行业标准设计工具,同时还采用广为接受的相关功率分析 (CPA) 攻击。使用基于 NCFET 的 7nm FinFET 技术的标准单元库及其对应的 CMOS 设置,我们的评估表明,由于负电容对开关功率有相当大的影响,基于 NCFET 的电路对经典 CPA 攻击更具弹性。我们还证明,铁电层越厚,基于 NCFET 的电路的弹性越高,这为优化和权衡打开了新的大门。
摘要 — 低温 CMOS 电路因其在量子计算、磁共振成像、粒子探测器和太空任务等领域的潜在应用而备受关注。这些电路在低于 77 K 直至接近绝对零度的温度下工作,由于深低温下可用的冷却功率有限,因此面临严格的功率限制。虽然低温操作可以大幅减少漏电流并提高晶体管效率,但优化低温 CMOS 电路以在冷却限制内最小化静态和动态功耗至关重要。在本文中,我们提出了一种低温感知技术映射方法来优化低温 CMOS 电路的功率特性。所提出的方法以技术独立的逻辑网络和低温标准单元库作为输入,并生成技术映射的门级网表,从而显着降低功耗。通过考虑低温下的静态和动态功率限制,与最先进的低温非感知算法相比,该方法可实现高达 26.89% 的平均功耗降低。这种优化使得基于大规模标准单元的数字电路能够在关键应用中的低温下高效运行。
摘要:加法是数字计算机系统的基础。本文介绍了三种基于标准单元库元素的新型门级全加器设计:一种设计涉及 XNOR 和多路复用器门 (XNM),另一种设计利用 XNOR、AND、反相器、多路复用器和复合门 (XNAIMC),第三种设计结合了 XOR、AND 和复合门 (XAC)。已与许多其他现有的门级全加器实现进行了比较。基于对 32 位进位纹波加法器实现的广泛模拟;针对高速(低 V t )65nm STMicroelectronics CMOS 工艺的三个工艺、电压和温度 (PVT) 角,发现基于 XAC 的全加器与所有门级同类产品相比都具有延迟效率,甚至与库中可用的全加器单元相比也是如此。发现基于 XNM 的全加器具有面积效率,而基于 XNAIMC 的全加器在速度和面积方面与其他两种加法器相比略有折衷。I. 简介二进制全加器通常位于微处理器和数字信号处理器数据路径的关键路径中,因为它们是几乎所有算术运算的基础。它是用于许多基本运算(如乘法、除法和缓存或内存访问的地址计算)的核心模块,通常存在于算术逻辑单元和浮点单元中。因此,它们的速度优化对于高性能应用具有巨大的潜力。1 位全加器模块基本上由三个输入位(例如 a、b 和 cin)组成并产生两个输出(例如 sum 和 cout),其中' sum'指两个输入位'a'和'b'的总和,cin 是从前一级到这一级的进位输入。此阶段的溢出进位输出标记为“ cout ”。文献 [1] – [10] 中提出了许多用于全加器功能的高效全定制晶体管级解决方案,优化了速度、功率和面积等部分或所有设计指标。在本文中,我们的主要重点是使用标准单元库 [11] 中现成的现成组件实现高性能全加器功能。因此,我们的方法是半定制的,而不是全定制的。本文主要关注逻辑级全加器的新颖设计,并从性能和面积角度重点介绍了与许多其他现有门级解决方案的比较。从这项工作中得出的推论可用于进一步改进晶体管级的全加器设计。除此之外,本文还旨在提供教学价值的附加值。本文的其余部分组织如下。第 2 节介绍了 1 位二进制全加器的各种现有门级实现。第 3 节提到了三种新提出的全加器设计。第 4 节详细介绍了模拟机制和获得的结果。最后,我们在下一节中总结。
firescapeLite®是一种具有高度有效且环保的紧急照明照明仪和出口标志的范围,采用了最新的LED技术,并具有独特设计的“踩踏”变压器,这使它们能够受到驱动的驱动。积分后电池提供了足够的功率,可以在超过英国和欧洲标准要求的三个小时内照亮标准单元。firescapeLite®单元可以安装在可以与照明电路永久实时饲料连接的任何位置安装。Luminaire范围提供了经过第3方验证的第3个方,符合ICEL符合ICEL的照明水平,用于逃生路线,重点,开放区域和最终出口,高功率模型可以在9米高的高度上执行。出口标牌范围提供了以各种方向格式的ISO7010兼容,易于读取的标牌。每个设备的内部电子设备提供了充电电路,备用电池和主LED的持续自我诊断。积分双色状态LED立即指示任何元素的性能是否存在问题,以确保设备始终执行至最佳。借助这些功能,FireScapeLite®为您的建筑物及其居住者提供了紧急照明安全的终极。