摘要:鸟类(鸟纲)是陆地脊椎动物中种类最多的物种,具有类特异性特征,但外部表型多样性令人难以置信。鸟类对农业至关重要,也是模式生物,它们已经适应了许多栖息地。鸟类是恐龙的唯一现存例子,它们出现于约 1.5 亿年前,目前有 10% 以上濒临灭绝。这篇综述全面概述了鸟类基因组(“染色体”)组织研究,主要基于染色体涂绘和基于 BAC 的研究。我们讨论了可靠地生成染色体水平组装和以比以前更高的分辨率和更宽的系统发育距离分析多个物种的传统和现代工具。这些结果允许对染色体间和染色体内重排进行更详细的研究,为进化和物种形成机制提供独特的见解。“标志性”鸟类核型可能出现于约 2.5 亿年前,在大多数群体(包括灭绝的恐龙)中基本保持不变。例外包括鹦鹉形目、隼形目、隼形目、鹃形目、鲹形目,偶尔还有雀形目、鹳形目和鹈形目。这种显著保护的原因可能是二倍体染色体数目较大,通过更多可能的配子组合和/或增加重组率产生变异(自然选择的驱动因素)。更深入地了解鸟类基因组结构,可以探索与进化断点区域和同源连锁块的作用有关的基本生物学问题。
抽象目的:染色体不稳定性(CIN)是癌症的标志,其特征是染色体的细胞对细胞变异性,在癌细胞群体中经常观察到,并且与预后不良,转移和治疗耐药性不佳有关。乳腺癌(BC)的特征是不稳定的核型,最近的报道表明CIN可能会影响BC对化疗方案的反应。然而,已经观察到极端CIN与改善结果之间的矛盾关联。Methods: This study aimed to 1) evaluate CIN levels and clonal heterogeneity (CH) in MCF7, ZR-751, MDA-MB468, BT474, and KPL4 BC cells treated with low doses of tamoxifen (TAM), docetaxel (DOC), doxorubicin (DOX), Herceptin (HT), and combined treatments (TAM/DOC,通过使用荧光原位杂交(FISH),TAM/DOX,TAM/HT,HT/DOC和HT/DOX)通过将鱼类的结果与细胞增殖进行比较,检查与治疗的响应相关性。结果:根据三个特征,中间CIN与药物敏感性有关:雌激素受体α(ERα)和HER2状态,癌细胞中的CIN水平以及治疗诱导的CIN。ERα +/HER2-具有中间CIN的细胞对紫杉烷(DOC)和蒽环类动物(DOX)的治疗敏感,而ERα - /HER2-,ERα +/HER2 +,ERα +/HER2 +,ERα-/HER2 +细胞具有中间型的抗性。结论:对BC中CIN和CH的更深入的了解可以帮助优化现有的治疗方案和/或支持改善癌症结局的新策略。关键词乳腺癌;染色体不稳定性;耐药性;鱼;克隆异质性
核电厂的严重事故发生在1986年的切尔诺贝利,1979年的三英里岛核产生站和2011年的福岛daiichi核电站。大量放射性材料,包括137 CS和131 I,从反应堆释放到Chernobyl和Fukushima的环境中。1986年,周围地区的许多儿童和青少年喝了放射性碘的牛奶,这导致甲状腺癌的发生率显着增加。相比之下,IAEA报告说,福基岛周围的甲状腺癌发病率增加,因为很难评估如此小的发生率与癌症发病率正常的统计波动的发生率很小[1]。过滤的遏制通风系统(FCVSS)是严重核事故的应急响应系统的一个例子[2,3]。另一方面,已经开发了高效多核型气溶胶过滤系统的模型,以减少工人在福岛daiichi核电站退役活动中内部暴露的辐射剂量[4]。该系统包括一个干燥或湿的过滤器,用于收集放射性灰尘和烟雾,此外,除了银掺杂的沸石过滤器,用于捕获包括129 I.两种系统均设计用于去除反应器和封闭容器释放的放射性核素[2-4]。碘以多种化学形式存在,包括气相中的I 2和Ch 3 I,在液相[5-12]中存在I-和IO 3-。i 2在通风气体中,通过湿过滤很容易与其他水溶性离子一起溶解在水中。然而,通风气体中也包含缺水的物种,例如Ch 3 I [13]。然后,有机碘的一些吸附剂,例如TEDA掺杂活化的木炭和银掺杂的沸石
• 用于建立细胞系的细胞最初是从家养约克夏猪的皮下腹部脂肪组织活检中分离出来的。分离的细胞使用已验证其预期用途的标准方法(包括显微镜检查)进行表型鉴定。• 细胞系是通过选择性培养贴壁细胞,使其从含血清培养基生长到无血清培养基,经过几代(传代)培养而建立的。使用猪特异性聚合酶链式反应 (PCR) 检测来验证物种身份,并通过核型分析(正常染色体扩散)来评估遗传稳定性。• 细胞的培养方式如下:首先在贴壁培养增殖期增加细胞总数,然后进入细胞育肥期,在此阶段,细胞在特定培养基因子的诱导下形成细胞内脂滴。• 通过添加收获液分离细胞、离心、清洗,并在温控环境下储存在无菌容器中。 • 清洗后收获的材料被描述为培养的猪肉(Sus scrofa domesticus)脂肪细胞,其脂肪酸含量与传统猪肉脂肪产品相似。并提供了微生物、毒性重金属和微量金属的规格。• 我们评估了有关细胞系、生产工艺(包括建立细胞库)、生产过程中使用的物质以及收获的细胞材料特性的信息,包括可披露的安全叙述中提供的信息以及补充保密材料中支持性佐证信息。• 根据 CCC 000008 中提供的数据和信息,我们目前对 Mission Barns 的结论没有任何疑问,该结论认为,由 CCC 000008 中定义的生产工艺产生的培养猪肉脂肪细胞材料构成或含有该材料的食品与通过其他方法生产的同类食品 1 一样安全。此外,我们尚未发现任何信息表明所述生产工艺
进化创新产生了表型和物种多样性。阐明此类创新背后的基因组过程对于理解生物多样性至关重要。在这项研究中,我们探讨了农业害虫玻璃翅神枪手(Homalodisca vitripennis,GWSS)进化新奇性的基因组基础。叶蝉的突出进化创新包括支体,这是一种排出并用于覆盖身体的蛋白质结构,以及与两种细菌类型的强制性共生关系,这两种细菌类型驻留在不同细胞类型的细胞质中。使用 PacBio 长读测序和 Dovetail Omni-C 技术,我们为 GWSS 生成了染色体水平的基因组组装,然后使用流式细胞术和核型分析验证了该组装。额外的转录组学和蛋白质组学数据用于识别支体产生的新基因。我们发现,支体相关基因包括通过串联重复而多样化的新基因家族。我们还确定了与细菌共生体相互作用的基因位置。GWSS 的祖先通过水平基因转移 (HGT) 获得了细菌基因,这些基因似乎有助于共生体支持。使用系统基因组学方法,我们推断了 HGT 的来源和时间。我们发现一些 HGT 事件可以追溯到半翅目 Auchenorrhyncha 亚目共同祖先,代表了动物中已知的一些最古老的 HGT 例子。总体而言,我们表明叶蝉的进化新颖性是通过获得新基因(从头产生和通过串联重复产生)、获得新的共生关联(允许使用新的饮食和生态位)以及招募外来基因来支持共生体和增强食草性而产生的。
了解物种间染色质构象的进化对于阐明基因组的结构和可塑性至关重要。线性远距离基因座的非随机相互作用以物种特异性模式调节基因功能,影响基因组功能、进化,并最终影响物种形成。然而,来自非模式生物的数据很少。为了捕捉脊椎动物染色质构象的宏观进化多样性,我们通过 Illumina 测序、染色体构象捕获和 RNA 测序为两种隐颈龟 (cryptodiran,藏颈龟) 生成从头基因组组装:Apalone spinifera (ZZ/ZW,2 n = 66) 和 Staurotypus triporcatus (XX/XY,2 n = 54)。除了在线性基因组中检测到的融合/裂变事件外,我们还检测到龟类的三维 (3D) 染色质结构与其他羊膜动物存在差异。也就是说,全基因组比较揭示了龟类染色体重排的不同趋势:(1)鳖科(Trionychidae)的基因组改组率较低,而鸡(可能是龟类的祖先)与核型高度保守;(2)动胸龟科(Kinosternidae)和翠龟科(Emydidae)的融合/裂变率中等。此外,我们还发现了一种染色体折叠模式,这种模式使以前在龟类中未检测到的“着丝粒 - 端粒相互作用”成为可能。“着丝粒 - 端粒相互作用”(本文发现)加上“着丝粒聚集”(之前在蜥蜴类中报道过)的组合龟类模式对于羊膜动物来说是新颖的,它反驳了以前关于羊膜动物 3D 染色质结构的假设。我们假设,在龟类中发现的不同模式起源于羊膜动物祖先状态,该状态由核结构定义,微染色体之间存在广泛的关联,这些关联在线性基因组改组后得以保留。
性别发展的疾病(DSD)是临床和遗传上高度异质性的先天性疾病群体。通过互补的多学科诊断方法,包括全面的临床,荷尔蒙和遗传研究,最准确和快速的诊断可能是可以实现的。对DSD的快速准确诊断需要在性别选择和案件管理方面的紧迫性。尽管在当前的日常实践中进行了基因检测,但在很大一部分情况下,遗传原因仍未阐明。核型分析可以用作性染色体鉴定的标准。此外,可以使用定量的荧光聚合酶链反应或原位杂交分析分析,用于更快,更具成本效益的性染色体和SRY基因。多重连接依赖性探针扩增,单基因序列分析,下一代序列分析(NGSA),靶向NGSA,全外观测序和全基因组测序分析可以根据初步诊断进行。微阵列分析,包括阵列比较基因组杂交和单核苷酸多态性阵列,应在患有综合征发现的病例中进行,如果未检测到其他测试的病理学。在DSD案例中,可以考虑使用光学基因组映射和技术(可能在不久的将来进行的日常实践中)的使用。总而言之,DSD的临床和遗传诊断很困难,并且通常无法获得分子遗传诊断。这对患者及其家人具有社会心理和健康影响。新的遗传技术,尤其是针对整个基因组的遗传技术,可以通过鉴定鲜为人知的遗传原因来更好地理解DSD。本综述着重于DSD遗传诊断中使用的常规遗传和下一代遗传技术,以及在不久的将来可能在常规实践中使用的遗传诊断技术和方法。关键词:性发展的障碍,诊断方法,遗传诊断
异常染色体是癌症,阿尔茨海默氏症,帕金森氏症,癫痫和自闭症等遗传疾病的原因。核型分析是诊断遗传疾病的标准程序。识别异常通常是昂贵的,耗时的,在很大程度上依赖专家解释,并且需要相当大的手动效果。e效应是为了自动化核图分析。但是,大型数据集的不可用,尤其是包括染色体异常的样本的数据集提出了一个重要的挑战。自动化模型的开发需要广泛的标记和令人难以置信的异常数据,以准确识别和分析异常,这些异常非常困难地获得了足够的数量。尽管基于深度学习的体系结构在医学图像异常检测中产生了最先进的性能,但由于缺乏异常数据集,它不能很好地概括。这项研究介绍了一种新型的混合方法,该方法结合了无监督和监督的学习技术,以克服有限标记的数据和可伸缩性的挑战。最初对基于自动编码器的系统进行了使用未标记的数据培训,以识别染色体模式。它是在标记的数据上进行的,然后使用卷积神经网络(CNN)进行分类步骤。使用了234,259个染色体图像的独特数据集,包括训练,验证和测试集。在染色体分析的规模中标记出显着的成就。所提出的混合系统准确地检测到单个染色体图像中的结构异常,在对正常和异常染色体分类时达到了99.3%的精度。我们还使用结构相似性指数度量和模板匹配来识别与正常染色体不同的异常染色体的部分。这种自动化模型有可能显着促进与染色体相关疾病的早期检测和诊断,从而影响遗传健康和神经系统行为。
在 Xq13 带处发生断裂和重新连接的等着丝粒染色体 idic(X)(q13) 和 X 染色体长臂上的等染色体 i(X)(q10) 是癌症中罕见的细胞遗传学异常 ( 1 , 2 )。“ Mitelman 癌症染色体畸变和基因融合数据库 ”( 1 ) 的最新更新(2024 年 4 月 15 日)包含 47 个携带 idic(X)(q13) 的条目和 55 个携带 i(X)(q10 ) 的条目。idic (X)(q13) 主要见于被诊断为骨髓增生异常综合征 (MDS) 或急性髓细胞白血病 (AML) 的老年女性,在大多数情况下通常是唯一的细胞遗传学畸变 ( 1 , 3 – 8 )。相反,在各种肿瘤,包括 MDS 和 AML ( 1 ) 的复杂核型中,i(X)(q10) 多为继发性畸变。在 AML 和 MDS 的个案中,i(X)(q10) 是唯一的细胞遗传学异常 ( 9 , 10 )。仅在少数 MDS/AML 病例中报道了 Xq13 带中基因组断点的详细描述 ( 5 , 11 , 12 )。还发现患有 idic(X)(q13) 的 MDS/AML 患者的骨髓细胞中携带额外的亚微观遗传畸变 ( 5 , 13 )。尚未报道对 i(X)(q10 ) 病例中可能存在的其他遗传畸变进行调查。i(X)(q10) 的主要后果被认为是 Xp 的丢失和 Xq 上几个基因的获得。此外,其他遗传异常,包括 Tet 甲基胞嘧啶双加氧酶 2 ( TET2 ) 基因的致病变异,已被认为是 idic(X) 阳性髓系恶性肿瘤患者的常见继发事件 ( 5 )。由于携带 idic(X) (q13) 或 i(X)(q10) 的髓系肿瘤罕见,且对其致病机制的了解尚不完全,我们在此介绍了五种髓系肿瘤的分子细胞遗传学和致病变异的特征
MMCT方法主要使用小鼠衍生的A9细胞和中国仓鼠衍生的CHO细胞作为染色体供体细胞,并将MB尺度的人类染色体(片段)引入人/小鼠干细胞中,并通过创建疾病模型和动物的创造来为生物学研究工具的开发。使用质粒载体和BAC载体的常规基因转移方法用于约5-200 kb的基因转移,使MB的尺度上的基因转移非常困难。另一方面,人类染色体引入方法通过使用人类单个染色体A9/CHO细胞库成功引入MB单元,该单元分别将染色体从1到22和X携带为染色体供体细胞。然而,保留在现有人类单染色体染色体A9/CHO细胞库中的人类染色体没有具有高染色体稳定性作为A9/CHO细胞的特征,从而导致部分染色体缺乏症和重排,从而使所需的人类染色体的长度很难以稳定的方式提供。此外,可以提供的染色体来自特定的人成纤维细胞系,导致缺乏遗传多样性。臀部细胞是一种极具吸引力的生物学资源,因为来自各种遗传背景(包括疾病患者)的人类衍生的细胞系显示了无限的增殖潜力,并且能够长期保持正常的染色体核型。该研究小组报告了一种新型高效的MMCT方法,其中使用紫杉醇(PTX)和反versin(Rev)生产微核细胞,将臀部细胞用作染色体供体细胞,并与CHO细胞融合。因此,在这项研究中,我们研究了是否可以通过使用PTX和Rev与不同的人IPS细胞产生的人IPS细胞衍生的微核细胞融合来引入染色体。