举办了 15 次短期培训访问,并进行了 42 次流动。开发了总结联盟提供的 RI 和服务的最新情况的数据库,确定了可能缺少的基础设施/服务,以实现最新 CST 实施计划的目标,并与利益相关者进行了讨论。最终确定了协调融资机会的概念说明,并举办了研讨会。EU-SOLARIS 成为 ERIC。与其他 CST 相关的欧盟项目和国际倡议开展合作。准备了实施 TA 活动的文件。发起了 5 次电话会议;完成了 4 次访问活动。4 次关于 TA 的网络研讨会。制定了熔盐 (MS) 对结构材料的动态腐蚀协议,研究了材料作为潜热或显热能储存介质的可行性的方法,并制定了原型测试指南。确定了 MS 回路的关键组件,并审查了当前程序。举办了关于 CSP MS 工厂组件特性的传播研讨会。制定了报告 DWT 系统行为的协议和指南,对适当的测试程序进行了通用定义,以评估 DWT 中要实施的新组件和材料的性能,改进了模拟软件并验证了其中使用的相关性。实施了新的实验装置。完成了开发用于热力学、动力学和循环稳定性测试的标准化材料测试的工作。对太阳能燃料 (SF) 生产工艺领域的 200 多种出版物进行了文献综述,并用于制定 SF 生产反应堆的品质因数。改进了用于评估 CSP 接收器热机械性能的测试台并进行了首次太阳能测试。组装了相机原型,基于一种改进 CSP 太阳能接收器温度测量的新方法。进行了 RRT 发射率测量。使用红外摄像机进行了参数识别以确定线性集热器管的温度。改进了加速老化装置。制定了脏污镜测量指南,分析了脏污散射行为,并提供了基于模型的分析传递函数。在测试台和太阳能集热器上生成了更多 REPA 负载数据,包括传感器数据分析。开发了新的抛物面槽 (PT) 接收器热损失测量程序。验证了混合预测模型,开发了预测模型。研究了使用天空成像仪数据对 PT 性能参数确定准确性的影响。发表了菲涅尔 RI 对 DNI 变化的稳健性。LFR
图表 图 1 接收器架构 [7] .................................................................................................... 6 图 2 用于生成 S 参数的输入和输出端口。 [8] ........................................................... 6 图 3 体 CMOS 与 FD-SOI 结构 [9] .............................................................................. 8 图 4 共栅极放大器(左)共源放大器(右) ........................................................ 10 图 5 级联电感退化 CS LNA 原理图 ........................................................................11 图 6 测试台设置 ......................................................................................................................... 14 图 7 Cpad 的参数扫描 ............................................................................................................. 15 图 8 理想元件的 S11 行为 ............................................................................................................. 16 图 9 所需频带的 S21 行为宽度 ............................................................................................................. 17 图 10 S21 带宽 ............................................................................................................................. 18 图 11 理想元件的噪声系数 ............................................................................................................. 19 图 12 增益(单位为 dBm) ............................................................................................................. 20 图 13 非理想元件的 S11 行为 ............................................................................................................. 21 图 14 非理想元件的 S21 行为........................................................................... 22 图 15 S21 带宽 ...................................................................................................................... 23 图 16 非理想元件的噪声系数 ...................................................................................................... 24 图 17 功率增益 ...................................................................................................................... 25 图 18 完整布局 ...................................................................................................................... 26 图 19 电阻器 MOSFET 和电容器的放大布局。 ............................................................. 27
摘要 - 越来越多地将Swarm算法作为解决各个领域的分布式,复杂问题的潜在解决方案。但是,由于缺乏健壮和灵活的测试床,开发和测试这些算法仍然具有挑战性。此外,有效地调整群体算法的参数以适合特定情况是一个重要的挑战。本文纸提出了萨尔萨纸,这是一个综合且可扩展的框架,旨在简化群体算法的开发和评估 - 旨在易于使用。我们的测试床使用户能够定义自定义的群算法,无人机类型,检测目标和代理交互过程。它还允许动态参数更新,提供即时反馈以优化算法performence。此外,测试台支持用户限制的数据和自动数据收集,以确保用户可以充分地收集相关的数据。总的来说,莎莎莎莎通过减少设置和测试群算法所需的时间和精力来提高研究效率。索引术语 - 空军,空中群,多机构系统,自组织系统,仿真,测试床
摘要。基于永磁同步电动机 (PMSM) 的机电执行器 (EMA) 目前用于各种飞机系统,并且在安全关键应用中越来越广泛。与其他电机相比,PMSM 具有高功率重量比和低齿槽效应:这使它们适合位置控制和致动任务。EMA 在模块化、机械简单性、整体重量和燃油效率方面比液压伺服执行器具有多项优势。同时,与液压执行器相比,它们的基本可靠性固有较低。然后,将 EMA 用于安全关键飞机系统需要采用风险缓解技术来解决这个问题。在此框架中,诊断和预测策略可用于系统健康管理,以监视其行为以寻找最常见或最危险故障模式的早期迹象。我们提出了一种基于 PMSM 的 EMA 低保真模型,用于基于模型的诊断和预测监测。该模型具有计算成本低的特点,允许近乎实时地执行,并且在模拟故障系统操作时具有适当的精度。通过将其行为与用作模拟测试台的更高保真度模型进行比较来验证此简化的模拟器。
在本文中,我们将VR视为铭文悠久传统的新写作空间。构建虚拟现实(VR)叙述可以被理解为刻有空间中文本的过程,并将其作为“阅读”空间的过程。我们的研究目标是探索空间叙事提供的意义创造过程,以测试VR是否促进了传统的编织复杂,多个叙事链的方式,并为利用空间提供了新的机会。我们认为,与印刷书的线性空间相反,VR叙事空间与博物馆的物理空间相似,可以在三个不同的层面上进行分析:(1)空间本身的架构,(2)收藏品,(3)单个文物。为了为设计VR叙事提供更深层次的背景,我们设计并实施了一个名为RealityMedia的测试台,以探索传统叙事设备的数字补救措施以及VR的空间,沉浸式和互动效果。我们使用VR耳机和20名参与者的定性访谈进行了基于任务的用户研究。我们的结果突出了三个语义级别(空间,收集和工件)如何共同构成VR中有意义的叙事经历。
间歇性可再生能源占比高会导致频率波动,从而危及电网的持续运行。液态空气储能 (LAES) 是一种新兴技术,它不仅有助于能源部门脱碳,还具有提供可靠辅助服务的潜力。本文使用混合 LAES、风力涡轮机 (WT) 和电池储能系统 (BESS) 来研究它们在快速频率控制中的贡献。惯性控制、下垂控制和组合惯性和下垂项应用于混合可再生能源系统的每个源,并进行全面分析以研究它们对频率最低点改善的影响。分析表明,具有组合惯性和下垂控制项的 LAES 以及 WT 和 BESS 的惯性控制可提供可靠的频率控制。为了进一步改善频率最低点,提出了一种模糊控制并将其应用于 LAES。所提出的控制系统提供了更适应干扰的性能。此外,还进行了实验测试,以使用实时硬件在环测试台验证所提出的控制方法。模拟和实验结果表明,当实施可变增益控制方案时,混合可再生能源系统中的 LAES 可以显著有助于频率控制。
对集成系统中关键单元进行有效组合的需求日益增加。SoC 系统的开发旨在提供芯片级集成,这成为集成电路发展的必然趋势,并广泛应用于智能手机、工业应用和微控制器。ARM AMBA 协议是系统各个部分之间交互的普遍采用的方式。在 AMBA 架构中,AHB 到 APB 桥接器对于在 SoC 系统中结合高性能 AHB 总线和低功耗 APB 总线做出了重要贡献。本项目旨在使用 Verilog 实现 AHB 到 APB 桥接器,从而实现这两条总线之间的稳定数据传输。所提出的 AHB 到 APB 桥接器旨在适应不同的读写策略并确保 APB 总线上外设的正常工作。该桥接器已通过 Verilog 硬件描述语言 (HDL) 实现。创建了一个测试台,其中有一个虚拟 AHB 主机和一个优化的 SRAM 作为高速 APB 外设。Verdi 仿真表明该桥接器完全符合设计意图。关键词:AHB 到 APB 桥接器;片上系统 (SoC); AMBA 协议。
Rosstandart 的 FBU TsSM 系统是国家质量基础设施的基本组成部分。产品测试和计量可确保测量的一致性、准确性和可靠性,是确认产品在其生命周期各个阶段的一致性的活动的基础。只有中心配备标准设备,这些极其重要的工作才能高质量实施。不是比喻意义上的,而是最字面意义上的。因此,需要不断现代化、技术更新和掌握新能力。近年来,中心的创新发展开始受到建筑物理和道德老化的阻碍,日益满足工作场所组织的要求和放置参考设备的条件。随着重建主要阶段的完成,工作场所的人体工程学已达到现代要求的水平。对外部影响最敏感的标准和测试台现在位于“远离城市噪音”的地下两层专门准备的房间中。越来越多的多功能测量仪器出现,可以进行两种、三种或更多种类型的测量。在重新设计场所时,我们寻求为实验室内和实验室间转移 SI 建立最佳的物流。放置非格式设备的机会已经出现。测试流量计的装置占地350平方米。设备工作面积
数据中心消耗的能源开始占世界能源消耗和碳排放的很大一部分。消耗的能源中有很大一部分用于数据中心冷却,这促使人们在数据中心的温度管理方面开展了大量工作。有趣的是,温度管理的一个关键方面尚未得到很好的理解:控制运行数据中心冷却系统的设定温度。大多数数据中心根据制造商的(保守)建议来设置恒温器,因为人们对更高的温度将如何影响系统的理解有限。同时,研究表明,仅将温度设定点提高一度就可以节省 2-5% 的能耗。本文对数据中心的温度管理进行了多方面的研究。我们使用来自不同生产环境的大量现场数据来研究温度对硬件可靠性的影响,包括存储子系统、内存子系统和整个服务器的可靠性。我们还使用基于热室的实验测试台和大量基准来研究数据中心温度升高的另外两个潜在问题:对服务器性能和功耗的影响。根据我们的研究结果,我们为数据中心的温度管理提出了建议,这些建议可以节省能源,同时限制对系统可靠性和性能的负面影响。
2-3 1.4 数字系统 4 5 4-5 1.5 逻辑门 3 8 6-7 2.2 布尔方程 4 12 8-9 2.3 布尔代数 4 16 10 2.4 从逻辑到门 2 18 第 2 单元:组合逻辑设计: 11 2.1 简介 1 19 12 2.5 多级组合逻辑 2 21 13 2.6 X 和 Z 2 23 14-15 2.7 卡诺图 3 26 16 2.8 组合构建块 2 28 17 2.9 时序 2 30 18 4.1 HDL:简介 2 32 19-20 4.2 组合逻辑 2 34 21 4.3结构建模 3 37 22 4.7.1 数据类型 2 39 第 3 单元:时序逻辑设计: 23 3.1 简介 2 41 24-26 3.2 锁存器和触发器 5 46 27-28 3.3 同步逻辑设计 3 49 29-30 3.4 有限状态机 4 53 31-33 3.5 时序逻辑的时序 5 58 34 3.6 并行性 2 60 第 4 单元:硬件描述语言 2: 35-37 4.4 时序逻辑 5 65 38-40 4.5 更多组合逻辑 5 70 41-42 4.6 有限状态机 4 74 43-44 4.8 参数化模块 4 78 45-46 4.9 测试台 4 82 第 5 单元:数字构建模块: