摘要:DNA碱基三重态的短距离电荷转移在生物电子设备中具有广泛的应用前景,用于识别DNA碱基和临床诊断,其开发的关键是了解短距离电子动力学的机制。然而,追踪在DNA碱基三胞胎的短距离电荷传输中如何传递电子仍然是一个巨大的挑战。在此,通过从头算分子动力学和eHrenfest动力学,胸腺氨酸 - 腺苷 - 胸腺氨酸(TAT)电荷转移过程的核电子介入成功地成功模拟了。结果表明,TAT的电子转移具有10 fs的振荡现象。电荷密度差证明,在50 fs时,电荷转移比例高达59.817%。氢键的峰位置定期在-0.040和-0.056之间闪烁。时间依赖性的Marcus – Levich-Jortner理论证明,核与电子之间的振动耦合会在TAT中诱导相干电子转移。这项工作提供了DNA碱基三重态的短距离相干电子转移的实时证明,并为新型生物学探针分子的设计和开发建立了理论基础。
摘要:微生物燃料电池(MFC)为各种生物技术应用提供了可持续的解决方案,并且是生物技术研究的关键领域。MFC可以通过分解有机物并发电来有效治疗各种垃圾,例如废水和生物柴油废物。某些假单胞菌物种具有细胞外电子转移(EET)途径,使它们能够将电子从有机化合物转移到MFC阳极。此外,假单胞菌物种可以在低氧条件下生长,这是有利的,因为MFC中的电子转移过程通常会导致阳极处的氧气水平降低。这项研究的重点是评估与1 G.L - 1甘油生长的新假单胞菌接种的MFC,这是生物柴油生产的常见副产品。假单胞菌sp。BJA5的最大功率密度为39 mW.m -2。另外,观察到的伏安图和基因组分析表明,BJA5的新型氧化还原介质的潜在产生。此外,我们研究了该细菌作为合成生物学非模型底盘的潜力。通过测试各种遗传部分,包括构成启动子,使用PSEVA载体作为脚手架的复制起源和嘉戈斯,我们评估了细菌的适用性。总的来说,我们的发现提供了利用假单胞菌属的宝贵见解。bja5是MFC的新型底盘。合成生物学方法可以进一步增强该细菌在MFC中的性能,从而提供改进的途径。
摘要:光氧化还原催化通常依赖于单个发色团的使用,而将两种不同的光吸收剂结合起来的策略很少见。在绿色植物的光系统 I 和 II 中,两个独立的发色团 P 680 和 P 700 都独立地吸收光,然后它们的激发能量以所谓的 Z 方案结合,从而驱动一个热力学上非常苛刻的整体反应。在这里,我们采用这一概念对有机底物进行光氧化还原反应,其中组合能量输入是两个红光子而不是蓝光或紫外光。具体而言,在过量二异丙基乙胺存在下,Cu I 双(α-二亚胺)复合物与原位形成的 9,10-二氰基蒽基自由基阴离子结合可催化约 50 个脱卤和脱甲磺酰反应。这种双光氧化还原方法似乎很有用,因为红光的破坏性较小,而且穿透深度比蓝光或紫外线辐射更大。紫外-可见瞬态吸收光谱表明,溶剂从乙腈到丙酮的细微变化会引起反应机制的转变,涉及占主导地位的光诱导电子转移或占主导地位的三重态-三重态能量转移途径。我们的研究说明了在多光子激发条件下运行的系统的机械复杂性,并提供了有关如何使所需和不需要的反应步骤之间的竞争变得更可控的见解。关键词:光催化、光谱、机械分析、电子转移、能量转移■简介
电活性微生物具有与电极交换电子的独特能力。基础过程称为细胞外电子转移(EET)。通过EET,微生物代谢可以与电流流相结合。因此,电活性微生物具有在微生物电化学技术中应用的巨大潜力。例如,它们可用于微生物燃料电池(MFC)来降解废水和其他水域中的有机材料,将电子转移到电极以提供电能。在EET的帮助下,电活性微生物会影响,例如碳循环,可以在许多微生物群落中找到(例如在人类肠道微生物组中)。
摘要 光系统 II (PSII) 利用红光的能量分解水并还原醌,这是一个基于叶绿素 a (Chl-a) 光化学的耗能过程。两种蓝藻 PSII 可以使用叶绿素 d (Chl-d) 和叶绿素 f (Chl-f) 进行相同的反应,但需要使用能量较低的远红光。Acaryochloris marina 的 PSII 的 35 个 Chl-a 中除了一个以外全部被 Chl-d 取代,而兼性远红光物种 Chroococcidiopsis thermalis 的 PSII 只有 4 个 Chl-f、1 个 Chl-d 和 30 个 Chl-a。从生物能量学角度考虑,远红光 PSII 预计会失去光化学效率和/或对光损伤的恢复能力。在这里,我们比较了 Chl-f-PSII、Chl-d-PSII 和 Chl-a-PSII 中的酶周转效率、正向电子转移、逆反应和光损伤。我们表明:(i) 所有类型的 PSII 都有相当的酶周转效率;(ii) Chl-d-PSII 受体侧的能隙改变有利于通过 P D1 + Phe - 重新填充进行重组,导致单线态氧产生增加,并且与 Chl-a-PSII 和 Chl-f-PSII 相比对高光损伤更敏感;(iii) Chl-f-PSII 中受体侧的能隙经过调整以避免有害的逆反应,有利于对光损伤的恢复而不是光利用效率。结果可以通过电子转移辅因子 Phe 和 QA 的氧化还原调节差异以及与主要电子供体共享激发能的叶绿素的数量和布局差异来解释。 PSII 通过两种不同的方式适应较低的能量,每种方式都适合其特定的环境,但具有不同的功能惩罚。
摘要:电子分叉是一种巧妙的生物能量转换机制,可有效耦合三种不同的生理相关底物。因此,执行此功能的酶通常在调节细胞氧化还原代谢中起关键作用。一种这样的酶是 NADH 依赖性还原铁氧还蛋白:NADP + 氧化还原酶 (NfnSL),它将 NAD + 的热力学有利还原耦合以驱动铁氧还蛋白从 NADPH 的不利还原。NfnSL 与其底物的相互作用被限制在严格的化学计量条件下,这可确保非生产性分子内电子转移反应的能量损失最小。然而,决定这一情况的因素尚不清楚。NfnSL 的一个奇怪特征是,分叉电子的两个初始受体都是独特的铁硫 (FeS) 簇,每个簇包含一个非半胱氨酸配体。尽管位点分化的 FeS 配体在许多氧化还原活性酶中都存在,但它们的生化影响和机制作用仍是谜。在此,我们描述了野生型 NfnSL 和变体的生化研究,其中位点分化的配体之一已被半胱氨酸取代。基于染料的稳态动力学实验、底物结合测量、生化活性测定和酶中电子分布评估的结果表明,NfnSL 中的这种位点分化配体在维持两种电子转移途径执行的协调反应的保真度方面发挥作用。鉴于这些辅助因子的共性,我们的发现具有广泛的意义,超越了电子分叉和机械生物化学,并可能为调节细胞氧化还原平衡的方法提供信息,以实现有针对性的代谢工程方法。
为了打击全球变暖并实现循环经济,碳捕获和利用率(CCU)在过去几十年中已开发出41种技术,以将CO 2回收到有用的资源中。在这42种技术中,与可再生能源相结合的微生物电气合成(MES)已在近43个几年中作为一个可持续的平台,用于从Co 2 44中产生甲烷气或其他生物化学物质的可持续平台(Bian等,2020b,2020b; Fu et al。,2018; liu et al al al al al al al an a al al an al an al al et al al an allie et al an; fu et et al。自MES的首次概念验证(Nevin等,45,2010年),自我生成的化学杂质促营养物,作为MES阴极表面上的生物催化剂或46个悬架中的生物催化剂,已依靠介导或直接电子转移(DET)进行47 CO 2的固定(bian et al.2021; viveeauy;然而,通过C型细胞色素,H +依赖性的RNF复合物,氢化酶,或49种生物纳米线菌(Logan等人,2019; Prevoteau et et prevoteau et et and the Fresparane),只有几毫克的bark虫,通过C型细胞色素直接通过48种化学载体促营养的人吸收。对于从51个纯或混合文化驱动的MES中的DET的能力(Tremblay等,2017; Yee等,2019)。52氢(h 2)气体已广泛与MES中介导的电子转移有关(Baek等,53 2022; Bian等,2021),因此对于增强CO 2的生化产生54的能力可能非常重要。55
界面裁缝对于钙钛矿太阳能电池(PSC)的效率和稳定性至关重要。报告的界面工程主要集中在能级转弯和陷阱状态钝化上,以改善PSC的光伏性能。在这篇综述中,根据材料界面的电子转移机制的基础进行了分子修饰。对能量水平修改和陷阱钝化的深入分析,以及接口调整中采用的通用密度功能理论(DFT)方法。此外,还讨论了通过界面工程来解决环境保护和大规模迷你模型制造的策略。本评论可以指导研究人员了解界面工程,以设计有效,稳定和环保PSC的接口材料。
将由研究生培训机构论坛制作合并的招股说明书,该论坛将提供所有参与培训机构中所有CPD-SS课程/活动的详细信息。2024年9月至2024年12月的招股说明书将于2024年9月生产并分发给所有CPD -SS招募者。2025年1月至6月的另一项招股说明书将不晚于2024年11月30日。CPD-SS仅规定在任何爱尔兰培训机构中进行的教育/培训活动。避免要求合格的NCHD提前支付课程,然后申请退款,并要求提前支付课程,并等待几周的退款,并建立HSE-NDTP和培训机构之间的电子转移机制。这将简化受训人员和培训机构的管理过程。