在集成电路制造过程中,晶圆表面状态及洁净度是影响晶圆良率和器件质量与可靠性的最重要因素之一,化学机械抛光 ( CMP )、湿法清洗、刻蚀、电化学沉积(电镀)等表面技术扮演重要的作用。公司围绕液体与固体衬底表面的微观处理 技术和高端化学品配方核心技术,专注于芯片制造过程中工艺与材料的最佳解决方案,成功搭建了 “ 化学机械抛光液 - 全品类 产品矩阵 ” 、 “ 功能性湿电子化学品 - 领先技术节点多产品线布局 ” 、 “ 电镀液及其添加剂 - 强化及提升电镀高端产品系列战略供 应 ” 三大核心技术平台。
摘要一种称为氢进化辅助(HEA)电镀的新型技术,与Galvanostatic的常规电镀方法相比,铜的沉积速率已显着增强,为将设备直接整合到织物上,从而开发了新的场所,从而导致了有用的可耐磨性电子产品的开发。HEA可用于在多壁碳纳米管(MWCNTS)涂层模板轨道和焊接表面上的电子设备(SMD)上两种打印铜轨道,可用于此类轨道,以证明其多功能性用于特定应用,用于特定的施用织物造成损耗。但是,在这个项目中,我们研究了铜沉积是如何使用1000 Denier涂层的Cordura Nylon,层压层的聚酯Ripstop和100%Virgin Vinyl在氢进化技术的情况下进行的。硫酸纯硫酸盐(CUSO 4)和硫酸(H 2 SO 4)用作培养基,通过在-2.0V之间应用-2.0V之间的电压在0.1mm的多壁碳纳米管轨道上进行横向沉积,该电压范围为-2.0V,使用电势可以利用圆柱电压仪的技术来实现级别的序列技术,以实现序列的序列。使用扫描电子显微镜(SEM)观察到相对于所使用的织物类型的织物的结构和铜沉积物的变化。关键词:氢进化有助于(HEA)电镀;铜电沉积;可穿戴电子设备;多壁碳纳米管;面料。导致各种引言以及可穿戴和柔性电子设备开发的优势,对使用无数应用的轻质,灵活和可穿戴的人类和环境监测系统的需求不断增长[1]。在不同的技术和方法中,通过铜电沉积可穿戴技术市场对织物上的导电模板(即电路布局)进行模式,这已经推动了过去几年中现场讨论过的主题之一,可以导致开发不同可穿戴和灵活的电子产品。
高质量扁平无引线 (QFN) 和小外形无引线 (SON) 封装具有紧凑性、成本效益和良好的电气和热性能,广泛应用于移动和汽车行业。然而,在高可靠性行业中使用 QFN 封装的一个挑战是由于引线侧面缺乏一致的焊料圆角形成。因此,在汽车行业中启用 QFN 和 SON 的关键工艺之一是可润湿侧面功能,它能够在 SMT 后组装到印刷电路板 (PCB) 时有效地形成焊料圆角。为了确保组装的印刷电路板符合质量标准,在组装过程中目视检查它们是否有缺陷和异常是必不可少的。本文介绍了一种在引线侧面镀有新型浸锡的可润湿侧面功能。它创造了可焊接的引线侧面,并通过可检测的润湿圆角高度增强了光学表面贴装封装检查。陶瓷板上的保质期研究和可焊性测试证明了满足可靠性标准的能力。板级可靠性 (BLR) 测试表明其性能与非可润湿侧面封装相当。
对未来的网格级存储应用有吸引力。金属Zn作为AZB的理想阳极,具有最高的理论能力(5851 mAh ml -1)。它也是无毒的,不可易变的,丰富的,并且具有良好的电导率和水稳定性。[1-5]然而,循环过程中的召开金属锌阳极遭受严重的树突形成,造成了严重的问题,例如较差的可逆性,电压滞后,寄生反应增加,缩短了电池损坏造成的电池故障以及其他问题。[1,3,6]这些树突状结构,稀有的针或非平面血小板沉积物,在电极的不规则或有缺陷区域偏爱形成,在该区域中,局部电流密度最高,初始核核事件最有可能[7],并且在高电流和coscAcs cocclities和coscling cancling cancling and coscling and cancliesitions [7]。[8,9]控制和抑制树突状增长的策略围绕着操纵电力,通常是通过包含添加剂[10-15],或通过将电极设计到高面积的海绵中[16-18],[16-18]或保护表面涂料,[19]以供应,[19]以抑制构建dendrite。
用于细线/间隔电路的受控表面蚀刻工艺 Ken-ichi Shimizu、Katsuji Komatsu、Yasuo Tanaka、Morio Gaku 三菱瓦斯化学公司,日本东京 摘要 随着半导体芯片设计向越来越细的线发展,塑料封装的 PWB 和基板的设计规则正朝着更高密度发展。首先,研究了传统减成工艺可以构建多细的线,发现即使使用一些新技术,该工艺的线/间隔也限制在 40/40 左右。下一个挑战是找到一种可以构建线/间隔并摆脱加成或半加成工艺的一些问题的工艺。经证实,与 CSE(受控表面蚀刻)工艺一起使用的改进的图案电镀工艺能够制作更细的线/间隔电路,例如大约 25/25 微米。CSE 工艺的特点是使用改进的软蚀刻溶液对基铜进行均匀蚀刻。简介 半导体芯片设计正朝着越来越细的线发展,以满足更多功能和高速的需求。这一趋势对高密度 PWB 和塑料封装基板提出了越来越高的需求,需要开发许多新材料和新工艺。为了满足这些要求,基板设计规则的一些关键点是线/间距和 PTH(镀通孔)或 BVH(盲孔)的焊盘直径。关于焊盘直径,人们付出了很多努力来减小孔径,工艺已从机械钻孔转变为激光钻孔,这已成为行业中处理较小孔(例如约 80 微米)的标准。另一方面,许多研究同时进行以开发更小的线/间距。然而,对更细线/间距的需求越来越强烈,未来将更加强烈。因此,本报告的第一个目标是找出“减法”可以实现的最小线/间距,因为自 20 世纪 60 年代多层 PWB 进入市场以来,这种方法一直被用作铜线形成的主要工艺。接下来,研究了另一种方案:为了实现更精细的线/间距,人们开始研究“图案电镀工艺”。在 20 世纪 60 年代,除了“减成法”等面板电镀工艺外,还开发了“图案电镀工艺”、“加成法”和“半加成法”等多种图案电镀工艺。最近,由于能够实现更精细的线/间距和高频矩形横截面,这种图案电镀工艺比面板电镀更受业界青睐。因此,下一个挑战是找到一种能够支持 25/25 等更精细的线/间距技术的工艺。为了解决“半加成法”中的一些问题,人们研究了“图案电镀工艺”。
图3. (a)室温下电流密度为50 µ Acm -2 时,原始离子凝胶(黑色)和LbL-SiO 2 - g -poly(PEG 4 -VIC)(橙色)的Li||Li电池中锂金属电镀/剥离的循环性能;(b)室温下不同电流密度(50/100/200 µ Acm -2 )下LbL膜的锂金属电镀/剥离性能比较。
由于其独特的化学特性,各种PFA可以降低表面张力(充当表面活性剂),是依赖油(含油含量),并且是依赖水(疏水性)。然而,许多具有某些官能团的PFA也相对溶解。它们已在全球许多行业中广泛用于多种应用。pfas是在1930年代后期首次发明的,在1940年代商业开发,并开始在1950年代的消费产品中更广泛地用作不粘涂料。由于其独特的化学特性,PFAS的产生增加了,因为这些化学物质被纳入墨水,清漆,蜡,消防泡沫,金属电镀,清洁溶液,涂料配方,润滑剂,水和油的润滑剂,剥离剂,纸张,纸张和纺织品(Paul等人。2009)。 使用PFA的行业的示例包括汽车,航空,航空航天和防御,生物剂,电缆和电线,建筑,电子,能源,能源,消防,食物加工,食品加工,家用产品,石油和采矿,金属电镀,金属电镀,医疗材料,纸张和纸板,半导体,半导体,半导体,纺织品,皮革商品,皮革产品,皮革和服装(OECD 2013,OEEP 2013,UNEP 2013,UNEP 2013)。 这些材料中PFA的存在是环境问题的潜在来源。2009)。使用PFA的行业的示例包括汽车,航空,航空航天和防御,生物剂,电缆和电线,建筑,电子,能源,能源,消防,食物加工,食品加工,家用产品,石油和采矿,金属电镀,金属电镀,医疗材料,纸张和纸板,半导体,半导体,半导体,纺织品,皮革商品,皮革产品,皮革和服装(OECD 2013,OEEP 2013,UNEP 2013,UNEP 2013)。这些材料中PFA的存在是环境问题的潜在来源。
摘要:本研究在高性能芳香族聚磺酰胺 (PSA) 纤维上设计并构建了双层纳米涂层,以实现强大的导电和电磁干扰 (EMI) 屏蔽。更具体地说,首先通过化学镀镍 (Ni) 或镍合金 (Ni-P-B) 赋予 PSA 纤维必要的电导率。之后,进行银电镀以进一步提高复合材料的性能。彻底研究了所提出的包覆纤维的形貌、微观结构、环境稳定性、力学性能和 EMI 屏蔽性能,以检查电沉积对非晶态 Ni-P-B 和结晶 Ni 基材的影响。获得的结果表明,PSA@Ni@Ag 和 PSA@Ni-P-B@Ag 复合纤维均具有高环境稳定性、良好的拉伸强度、低电阻和出色的 EMI 屏蔽效率。这表明它们在航空航天、电信和军事工业中具有广泛的应用前景。此外,PSA@Ni-P-B@Ag纤维配置似乎更合理,因为它表现出更光滑、更致密的银表面以及更强的界面结合,从而导致更低的电阻(185 m Ω cm − 1 )和更好的屏蔽效率(X波段为82.48 dB)。