最近提出的在Lyapunov指数上的通用结合的饱和已被猜想,以表明存在重力双重。这种饱和发生在密集的sachdev-ye-kitaev(Syk)模型的低温极限中,n majorana fermions具有q身体(q> 2)无限范围相互作用。我们计算了高度稀疏的Syk模型的N≤64费米子的某些耗时相关因子(OTOC),并且在汉密尔顿分解为块中的稀疏度到接近渗透极限的稀疏度中没有明显的依赖性。这为Lyapunov指数在稀疏SYK的低温极限中的饱和提供了强有力的支持。达到N¼64的关键要素是新型量子自旋模型仿真库的开发,该库在图形处理单元上实现了高度优化的无基质Krylov子空间方法。这会导致使用适度的计算资源的模拟时间明显降低,并大大减少了以前的方法的内存使用情况。强烈的稀疏驱动统计波动既需要使用大量的疾病实现,又需要使用大量的疾病实现,也需要仔细的有限尺寸缩放分析。稀疏SYK中结合的饱和指向存在一个重力类似物,该重力类似物将大大扩大具有此特征的场理论的数量。
人类通用转录因子 TFIID 由 TATA 结合蛋白 (TBP) 和 13 个 TBP 相关因子 (TAF) 组成。在真核细胞中,TFIID 被认为在所有蛋白质编码基因启动子上形成 RNA 聚合酶 II (Pol II) 前启动复合物,因此对 Pol II 转录至关重要。TFIID 由三个叶组成,分别称为 A、B 和 C。5TAF 核心复合物可以在体外组装,构成 TFIID 中叶 A 或 B 进一步组装的构建块。结构研究表明,TAF8 与叶 B 中的 TAF10 形成组蛋白折叠对,并参与叶 B 和叶 C 的连接。为了更好地了解 TAF8 在 TFIID 中的作用,我们研究了 TAF8 不同区域对叶 B 和 C 体外组装的要求以及某些 TAF8 区域对小鼠胚胎干细胞 (ESC) 活力的重要性。我们已经确定了 TAF8 的一个区域,该区域不同于组蛋白折叠结构域,对于与叶 B 中的 5TAF 核心复合物组装非常重要。我们还划定了另外四个 TAF8 区域,每个区域都单独需要与叶 C 中的 TAF2 相互作用。此外,CRISPR/Cas9 介导的基因编辑表明,与 5TAF 核心相互作用的 TAF8 结构域和与 TAF2 相互作用的 TAF8 富含脯氨酸的结构域都是小鼠胚胎干细胞存活所必需的。因此,我们的研究确定了参与连接 TFIID 叶 B 和叶 C 的不同 TAF8 区域,这些区域似乎对 TFIID 功能和随之而来的 ESC 存活至关重要。
二甲双胍分子的历史可以追溯到一个多世纪,但其临床用途始于50年代。从那时起,它在糖尿病患者中的使用不断增长,如今有超过1.5亿用户。治疗谱也扩大了,对新机制的理解得到了提高。二甲双胍通过作用于胰岛素受体和线粒体,对胰岛素耐药性具有重要活性,这很可能是通过腺苷单磷酸激活激酶的激活。这些和相关的机制导致明显的脂质降低和体重减轻。近年来已经采取了抗癌作用,其机制部分取决于线粒体活性以及某些恶性肿瘤中发生的磷脂酰肌醇3-激酶的抗性。二甲双胍提高寿命的潜力是大型持续研究的对象,也是几种基本和临床遗迹的对象。本评论文章将尝试研究这些不同活动背后的基本机制和潜在的临床益处。二甲双胍可以通过组蛋白修饰,DNA甲基化和miRNA作用于转录活性。通过激活核因子红细胞2相关因子和肠道微生物群的变化,可能会发生对年龄相关炎症(炎症)的活性。鼻溶性活性导致衰老相关的分泌表型减少细胞,在寿命延长以及与年龄相关疾病(如帕金森病)的寿命延长以及辅助特性中至关重要。端粒延长可能与线粒体呼吸因子1和过氧化物酶体γ增殖物共激活剂1-α的活性有关。最近观察到对最严重的神经系统疾病的潜力,例如肌萎缩性侧索硬化症和额颞痴呆,引起了巨大的希望。
缩写:AAV:腺相关病毒;ABCA1:ATP 结合盒转运蛋白 A1;ACE2:血管紧张素转换酶 2;ANXA1:膜联蛋白 A1;Bcl-2:B 细胞白血病/淋巴瘤 2;Bcl-xL:超大 B 细胞淋巴瘤;BDNF:脑源性神经营养因子;Brn3b:脑特异性同源框/POU 结构域蛋白 3b;C3:C3 胞外酶转移酶;CNV:脉络膜新生血管;CS:皮质类固醇;EAU:实验性自身免疫性葡萄膜炎;ECM:细胞外基质;EIU:内毒素诱导的葡萄膜炎;HLA:人类白细胞抗原;hSyn:人类突触蛋白 1 启动子;IL-1 β:白细胞介素 1 β;IOP:眼压; IRBP:光感受器间类视黄酸结合蛋白;MAC:膜攻击复合物;MAX:MYC 相关蛋白 X;MCP-1:单核细胞趋化蛋白-1;MMP:基质金属蛋白酶;Nabs:中和抗体;NF- κ B:核因子 κ B;NHP:非人类灵长类动物;NIU:非传染性葡萄膜炎;Nrf2:核因子红细胞2相关因子2;Pgk:磷酸甘油激酶;RGC:视网膜神经节细胞;RPE:视网膜色素上皮;scAAV:自互补 AAV;sCD59:可溶性 CD59;SOD2:超氧化物歧化酶 2;Tg-MYOC Y437H:具有肌动蛋白 Y437H 突变的转基因小鼠;TLR:Toll 样受体;TM:小梁网; TrkB:原肌球蛋白相关受体激酶-B;VEGF:血管内皮生长因子
Juglans Regia L.(核桃)由于其各种药物特性,包括其神经保护作用,对神经系统疾病的影响。此更新的评论阐明了核桃在阿尔茨海默氏病,帕金森氏病,抑郁症,癫痫和疼痛等神经系统疾病中的治疗潜力,并得到了体内和体外研究的证据的支持。These beneficial effects are attributed to the walnut's rich composition of bioactive compounds, including gallic acid, protocatechuic acid, ferulic acid, sinapate, ellagic acid, p-hydroxybenzoic acid, p-coumaric acid, quercetin 3-galactoside, juglone, vanillic acid, quercetin, myricetin, kaempferol,阿apigenin,luteolin,daidzein等。核桃的神经保护作用的机制包括减少氧化应激,炎症,凋亡,凋亡,蛋白水解,β-淀粉样菌斑的积累,乙酰胆碱酯酶(ACHE)活性,磷酸化 - 磷酸化-C-Jun n- n-N-末端激酶(P-Jnk)水平,升高的(P-Jnk)水平提高了Trive Reverratial Trive Restrigntry TriveTrient(MITONTRED)(MITOINT)(MITOINT)(MITOINT)(MITOINT)(MITOINT)(MITOINT)。稳态,线粒体相关蛋白的表达以及激活核因子红系2相关因子2(NRF2)/KELCH类似ECH相关的蛋白1(KEAP1)/血红素氧酶-1(HO-1)途径。尽管核桃在管理神经系统疾病及其并发症方面具有巨大的希望,但仍需要进行进一步的临床前和临床研究,以巩固这些发现。这项全面的评论强调了核桃作为天然治疗剂的潜力,并鼓励未来的研究以释放其全部神经保护潜力。
缩写:%,百分比; 4E-BP1,真核翻译起始因子4E结合蛋白; Akt,蛋白激酶B; B-CHP,胶原蛋白杂交肽; CD31,分化簇31; CER,神经酰胺;蛤,哥伦布仪器综合实验室动物监测系统; CM,文化媒体; Col-IV,胶原蛋白IV; CSA,横截面区域; dag,二甘油二酸酯; DAPI,4',6-Diamidino-2-苯基吲哚; ERK1/2,细胞外信号调节的激酶1/2; E-WAT,附子脂肪垫; FBXO32,F-box蛋白32; foxo3a,叉子盒O3; GTT,葡萄糖耐量测试; H,小时; H&E,苏木精和曙红; HOMA-IR,胰岛素抵抗的稳态模型评估; HSL,激素敏感脂肪酶;如果,免疫荧光; IL-6,白介素6; i-wat,腹股沟脂肪垫;最小,分钟; MTOR,雷帕霉素的机械靶标; Musa1,F-box蛋白30; MyHC,肌球蛋白重链; NMR,核磁共振; OCT,最佳切割温度化合物; p/t,磷酸化; PAX7,配对盒蛋白PAX-7; PGC-1α,过氧化物酶体增殖物激活的受体 - 伽马共振剂1α; QPCR,实时聚合酶链反应; RER,呼吸道交换比; RNA,核糖酸; RPS6K,核糖体结合蛋白S6激酶B1;标签,甘油三酸酯; TRAF6,肿瘤坏死因子受体相关因子6; USP,美国药品; VCO 2,二氧化碳生产; VO 2,消耗氧。
摘要:糖尿病是一种严重危害人类健康的慢性代谢疾病。各种研究都强调了维持大脑充足的葡萄糖供应并随后保障大脑葡萄糖代谢的重要性。本研究的目的是阐明和揭示长期高血糖背景下反复低血糖引起的代谢改变,以进一步了解除大脑损害之外的影响。为此,化学诱发的糖尿病大鼠经历了反复胰岛素诱发的低血糖发作。通过分光光度法测量了大脑皮层组织提取物或分离的线粒体中糖酵解、戊糖磷酸途径和克雷布斯循环的关键酶的活性。使用蛋白质印迹分析来测定葡萄糖和单羧酸转运蛋白的蛋白质含量,它们是胰岛素信号通路和线粒体生物合成和动力学的参与者。我们观察到复发性低血糖会上调线粒体己糖激酶和克雷布斯循环酶(即丙酮酸脱氢酶、α-酮戊二酸脱氢酶和琥珀酸脱氢酶)的活性以及线粒体转录因子 A (TFAM) 的蛋白水平。这两种损伤都会增加核因子红细胞 2 相关因子 2 (NRF2) 的蛋白含量,并引起线粒体动力学的不同影响。发现胰岛素信号下游通路被下调,并且发现糖原合酶激酶 3 beta (GSK3 β ) 通过 Ser9 磷酸化降低和 Y216 磷酸化增加而被激活。有趣的是,低血糖和/或高血糖不会导致在神经元可塑性和记忆中起关键作用的 cAMP 反应元件结合蛋白 (CREB) 水平发生变化。这些发现提供了实验证据,表明在慢性高血糖的情况下,复发性低血糖能够引发大脑皮层的协调适应性反应,最终有助于维持脑细胞健康。
缩写:AAD,衰老相关疾病;年龄,晚期糖基终产物; ap,apurinic/apyrimidinic; APE1/REF-1,apurinic/apyrimidin inononononononononononocleplease1/redox fastor-1; CM,心肌细胞; CO,一氧化碳; Copp,钴原源性; CP-312,心脏保护剂-312; CPC,心脏祖细胞; CSC,心脏干/祖细胞; CVD,心血管疾病; DHA,二十六烯酸; EC,内皮细胞; ECFC,内皮菌落形成细胞; eNOS,内皮一氧化氮合酶; EPA,二糖酸; EPC,内皮祖细胞; ESC,胚胎干细胞; Foxo,叉子盒; GPX,谷胱甘肽过氧化物酶; GRX,谷毒素; GWAS,全基因组协会研究; H 2 O 2,过氧化氢; H 2 S,硫化氢; HGPS,Hutchinson – Gilford progeria综合征; HIF-1α,缺氧诱导因子-1α; HO-1,血红素氧酶-1; I/R,缺血/再灌注; IPSC,诱导多能干细胞;线粒体电子传输链; MEF,小鼠胚胎成纤维细胞; Mi,心肌梗塞; MPTP,线粒体通透性过渡孔; NAC,N-乙酰L-半胱氨酸; NLRP3,点头样受体蛋白3;不,一氧化氮; NOX,NADPH氧化酶; NRF2,核因子红细胞2相关因子2; NRP1,Neuropilin 1; PM 2.5,颗粒物; PRX,过氧蛋白; PUFA,多不饱和脂肪酸; ROS,活性氧; SASP,与衰老相关的分泌表型; SDF-1,基质细胞衍生的因子1; SMPC,平滑肌样祖细胞;草皮,超氧化物歧化酶; SRF,血清反应因子; T-BHQ,Tert-丁基氢喹酮; TRX,TXN,硫氧还蛋白; TRXR,硫氧还蛋白还原酶; VEGF,血管内皮生长因子; VSMC,血管平滑肌细胞。
BAF(BRM/BRG1 相关因子)复合物(也称为 mSWI/SNF)是基因组染色质景观的关键调节器。通过控制染色质的可及性,BAF 调节谱系特异性转录程序,包括对 AML 母细胞生长和存活至关重要的程序。FHD-286 是 BAF 催化亚基 BRM 和 BRG1(SMARCA2/4)的强效抑制剂,正在开发用于治疗复发/难治性 AML 和 MDS。FHD-286 已证明在体外治疗来自不同遗传背景的 AML 患者样本中具有广泛的疗效,包括那些具有难以治疗的突变特征的样本,例如 mtNPM1、FLT3 ITD 和 EVI1 过表达的 Inv(3)。有趣的是,虽然较高浓度(≥90 nM)的 FHD-286 主要诱导细胞减少,但较低浓度(≤30 nM)诱导分化样反应。为了研究这种分化效应,我们在长期暴露于 FHD-286 后对细胞系和原发性 AML 样本进行了免疫表型分析。使用药理学相关浓度(5-20 nM)的 FHD-286 进行长期治疗(7 天以上)导致髓系成熟标志物 CD11b 的时间和剂量依赖性上调。CD11b+ 细胞表达较低水平的增殖和存活蛋白 Ki67 和 BCL2,以及 BRG1 蛋白,这意味着未成熟母细胞以高水平的 BRG1 为特征。这些结果表明 BAF 可驱动维持 AML 细胞处于未分化状态所需的转录程序,并且 FHD-286 可能通过克服这种分化阻滞来抑制 AML 细胞生长。我们还证明了在体外多种 AML 细胞系中与标准治疗细胞毒性药物联合使用具有益处,并且在体内具有显著的生存益处。总之,这些发现表明 FHD-286 能够靶向高度依赖 BRM/BRG1 的原始祖细胞群,并且与标准治疗药物联合使用可以在 AML 中实现显著的、突变不可知的抗肿瘤活性。
非积分性,多体物理学,复杂性,千古性和熵产生之间的联系是统计力学的基石。量子混乱的目的是将这些问题扩展到量子域中。在这方面的基础作品包括将经典周期性轨道与状态级统计密度[1]的密度[1],Wigner函数[2]的证明和量子疤痕相连的半经典方法[3]和与随机MA-Trix理论的连接。搜索混乱的这些足迹,以及独立于任何经典限制的“真实”量子混乱的表征,从基础观点也对量子信息处理都产生了重要的后果。例如,此类研究在量子系统中的复杂性,并在信息处理方案(如量子模拟)中起着至关重要的作用,例如量子模拟,这些模拟优于其经典对应物。量子域中混乱的表征自来就引起了很多争议,与其经典的反应部分不同,统一的量子进化保留了两个初始状态向量之间的重叠,因此排除对初始条件的持久性。但是,一项更深入的研究揭示了量子系统中的混乱。在过去的几十年中,已经对这些问题进行了广泛的研究,并且已经发现了古典混乱的几个量子特征。有趣的是,这与对实验室中单个量子系统的精致控制以及与不可融合/混乱的哈密顿量相干驱动这些系统的能力。otoc在量子最新趋势包括涉及量子混乱与超时订购的相关因子(OTOC)的连接以及多体系统中量子信息的扰动速率以及量子统计力学的基础,从量子统计力学的基础,量子相位转换的基础,以及一手的量子上的量子,到了其他内部的spram scram of Sprampham of Scramplam of Spram of Scramphorm of Spram ons noff onshoff onshond of Scram of Shore [4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4。
