非阿贝尔拓扑态是量子物质最显著的形式之一。这些系统中准粒子激发的交换以简并多体态空间中的非交换幺正变换为特征,即这些准粒子具有非阿贝尔编织统计 [ 1 , 2 ]。理论上预测非阿贝尔态可以描述某些分数量子霍尔 (FQH) 态 [ 3 – 6 ]。Kitaev 的蜂窝自旋液体模型 [ 7 ] 是另一个例子;它在磁场中表现出非阿贝尔相,激发具有 Ising-anyon 统计。实现物质非阿贝尔拓扑态的更一般系统类是 Kitaev 的精确可解量子双模型 [ 8 ],其中特定状态由选择链接(或规范)自由度取值的非阿贝尔群决定。在实验系统中实现量子双模型的一个障碍是,它们以群元素表示的自由度之间的多体相互作用来写,而不是物理自由度,如自旋或电荷。要通过实验实现量子双模型,需要设计具有一体和两体相互作用的母哈密顿量。参考文献 [ 9 , 10 ] 和 [ 11 ] 在这方面做出了显著的努力。参考文献 [ 9 , 10 ] 的量子双实现中的局域规范对称性是涌现的,仅在理论的低能部分活跃(因此是微扰的)。另一方面,在参考文献 [ 11 ] 中,局域规范对称性是精确的,但不清楚哈密顿量是否像在参考文献 [ 9 ] 中那样在物理上可实现,其中提出了使用约瑟夫森结阵列的物理实现。本文的目标是开发一个框架来填补这两种方法的空白:我们设计一个具有精确局部非阿贝尔规范对称性的物理哈密顿量,仅使用可以在物理系统(如超导量子电路)中实现的 1 体和 2 体相互作用。该计划的关键在于将组合规范对称性 [ 12 ](请参阅参考文献 [ 13 ],其中深入介绍了阿贝尔理论的对称性原理,并附带了示例的分步构建)扩展为非阿贝尔理论。规范对称性内置于微观哈密顿量中,因此是精确的,而不是仅在低能量极限下出现。规范对称性在现实哈密顿量中是精确的,这扩展了拓扑相可能稳定的参数范围,从而提供了一种摆脱可达到能隙大小限制的方法。此外,该模型具有铁磁和反铁磁 ZZ 相互作用,以及纵向和横向场。因此,自旋模型是自旋哈密顿量的明确实现,不存在符号问题,实现了非阿贝尔拓扑相。我们重点研究蜂巢格子上链接变量取四元数群 Q 8 内的值的量子双元组。我们用自旋-1/2 自由度表示 8 个四元数变量( ± 1、± i、± j 和 ± k)。我们将在蜂巢格子的每个链接中使用 4 个“规范”自旋,从而定义一个 16 维希尔伯特空间,我们将其分成偶数和奇数宇称态两组,并使用 8 个偶数宇称态来表示 8 个四元数。该构造使用链接上的“物质”自旋来分裂偶数和奇数宇称态,并在位置上强制三个四元数变量相乘为恒等式(“零通量”条件)。最后,我们给出具有相同非阿贝尔组合规范对称性的超导量子电路。在超导导线很小的极限情况下,电压偏置经过调整,使得每根导线中都倾向于两个近乎简并的电荷态,系统将成为文献 [ 14 ] 中引入的 WXY 模型的非阿贝尔推广。在这种情况下,问题中剩余的能量尺度是约瑟夫森耦合,如果系统(具有组合规范对称性)有间隙,则非微扰间隙必然是这个尺度的数量级。
耗散在自然界中普遍存在;例如原子核的放射性衰变和吸收介质中的波传播,耗散是这些系统与不同环境自由度耦合的结果。这些耗散系统可以用有效非厄米汉密尔顿量进行现象学描述,其中引入非厄米项来解释耗散。非厄米性导致复杂的能谱,其虚部量化系统中粒子或能量的损失。非厄米汉密尔顿量的简并性称为异常点 (EP),其中特征值和相关的特征态合并 [1,2]。许多经典系统 [3-11] 已证明有效哈密顿的存在,并应用于激光模式管理 [12-14]、增强传感 [15-20] 和拓扑模式传输 [21-24]。尽管有效哈密顿方法是几十年前作为量子测量理论的一部分发展起来的,但最近对单电子自旋 [25,26]、超导量子比特 [27] 和光子 [28-30] 的实验扩大了人们对非厄米动力学中独特量子效应的兴趣。已经采用两种方法来研究量子区域内的非厄米动力学。第一种方法是通过将非厄米哈密顿量嵌入到更大的厄米系统中 [25,26,30],通过称为哈密顿膨胀的过程来模拟这些动力学。第二种方法是将非厄米动力学直接从耗散量子系统中分离出来 [27] 。为了理解这种方法,回想一下耗散量子系统通常用包含两个耗散项的林德布拉德主方程来描述:第一个项描述系统能量本征态之间的量子跳跃,第二个项产生相干非幺正演化 [31 – 33] 。通过抑制前一个项,得到的演化是
随着工业革命期间蒸汽机的广泛应用,热力学作为一门物理理论应运而生,它能够描述和优化这些设备的性能 [1]。虽然现代热力学已远远超出了其原有的范围,但热机仍然是研究热力学机制的经典系统。热机不仅具有明确的实际应用,而且还为研究系统热力学性质如何演变提供了一种范例——应用范围从生物过程、气候系统到黑洞 [2-4]。量子系统受固有涨落和明显的非平衡性影响,为应用热力学框架带来了新的挑战 [5]。尽管如此,量子热机 [5,6] 为以易于理解的方式研究量子系统中的热力学行为提供了天然的基础。例如,在等容冲程中,总能通过能量的变化找到热量,就像在等熵冲程中可以通过能量的变化找到功一样 [7]。这或许可以解释为何有大量研究试图通过利用量子资源来提高发动机性能,包括相干性[8-15]、测量效应[16]、压缩储层[17-19]、量子相变[20]和量子多体效应[15,21-23]。其他研究则探讨了量子热机与经典热机之间的根本区别[24–26]、有限时间循环[13、27、28]、利用捷径实现绝热[12、22、23、29–33]、非热状态下的操作[34、35]、非马尔可夫效应[36]、磁系统[37–42]、非谐势[43]、光机械实现[44]、量子点实现[38、40、42]、二维材料中的实现[38、41]、与量子系统耦合的经典引擎[45]、量子冷却[46、47]、相对论系统[48、49]、简并效应[ 39、50],以及
离子阱系统具有较长的相干时间和较强的离子间相互作用,可实现高保真度的双量子比特门,是一种很有前途的量子信息处理方式 [1]。目前,大多数实现都由复杂的自由空间光学系统组成,其较大的尺寸以及对振动和漂移的敏感性会限制离子阵列的保真度和可寻址性,从而阻碍向大量量子比特的扩展。最近,基于集成光子学的设备和系统已被证明是解决这些挑战的一种途径 [2,3]。到目前为止,这些先前的集成演示仅限于使用单一线性偏振光(特别是横向电场 (TE))进行操作,该偏振光名义上与离子阱芯片表面平行。然而,不同的偏振对于实现先进的离子阱系统的许多操作至关重要 [4],这引起了人们对开发偏振多样化发射器的兴趣 [5,6]。例如,基于集成光子学的架构涉及 TE 和横磁 (TM) 偏振光(如图 1a 中的配置),对于实现先进的离子冷却方案必不可少,这种方案可在几种非简并陷阱振动模式下提供亚多普勒温度,例如偏振梯度冷却和电磁诱导透明冷却 [4]。在本文中,我们设计并通过实验演示了一对集成的 TE 和 TM 发射光栅,工作波长为 422 nm,对应于 88 Sr + 离子的 5 2 S 1/2 到 5 2 P 1/2 跃迁,这是离子控制的关键跃迁。我们实施了一种自定义的优化设计算法,以实现发射单向聚焦光束的双层、切趾和曲面光栅,实验测量的光斑尺寸为 TE 光栅 7.6 μm × 4.3 μm,TM 光栅 5.0 μm × 3.6 μm,目标离子高度距芯片表面 50 μm。据我们所知,这项工作代表了用于捕获离子系统的集成 TM 发射光栅的首次开发,因此,它为基于集成光子学的捕获离子量子系统涉及多个极化的高级操作奠定了基础。
高阶拓扑能带理论扩展了物质拓扑相的分类,涵盖了绝缘体[1-13]、半金属[13-18]和超导体[19-31]。它推广了拓扑相的体边界对应性,使得d维n阶拓扑相仅在其(d-n)维边界上具有受保护的特性,例如无带隙态或分数电荷。目前,已知有两种互补机制可产生高阶拓扑相(HOTP):(1)由于某些 Wannier 中心配置引起的角诱导填充异常[2, 5, 9, 32, 33],以及(2)边界局域质量域的存在[2, 3, 6 – 8, 34, 35]。这两种机制分别导致了角电荷的分数量子化和角处单个间隙态的存在。在一阶拓扑系统中,还存在保护每个边界上的多个状态的相。这发生在奇数维度的手性对称系统(十重分类中的 AIII 类[36 – 38])中。例如,在一维系统中,此类相由一个 Z 拓扑变量(称为绕组数 [ 39 , 40 ])来识别,它将哈密顿量的同伦类归类在第一个同伦群 π 1 [ U ( N )] 内,并对应于每个边界上简并零能态的数量。相反,应用于手性一维系统的 Wannier 中心方法仅根据电偶极矩(由 Wannier 中心的位置给出)是否量化为 0 或 e/ 2 产生 Z 2 分类。因此,从这个意义上说,Wannier 中心方法的范围相对于绕组数的范围较小;它将所有具有偶数绕组数的一维手性对称系统标记为平凡的。观察到 AIII 类 1D 系统具有比 Wannier 中心图提供的更完整的 Z 分类,这表明,类似地,AIII 类 HOTP 可能存在更完整的分类。例如,考虑堆叠 N 个拓扑四极子绝缘体 [1]。如果它们以手性对称方式耦合,则整个系统在每个角将具有 N 个零能态。然而,没有已知的拓扑四极子绝缘体 [2]。
手性是一种基本的不对称性质,用来描述可与其镜像区分开来的系统,它仍然是现代科学关注的焦点 1 – 4 ,手性材料有多种应用 5 – 8 。手性拓扑结构为新一代手性材料奠定了基础,其中手性扩展到纳米和微米尺度。在胆甾型液晶中观察到了非均匀手性态、螺旋、蓝色和扭曲晶界 (TGB) 相 9、10 。Skyrmion 是矢量序参数(如磁化强度或极化密度)的手性结构,由于其在信息技术中的潜在应用,在过去十年中在磁性材料中引起了相当大的关注 11 – 13。然而,这些材料的一个显着特征是特定的非手性对称性,这种对称性由胆甾体中的非镜像对称分子或磁性系统中的反对称自旋交换所具有,从而导致 Dzyaloshinskii-Moriya 自旋相互作用。最近,据报道,将承载 skyrmion 的磁体类型扩展到没有 Dzyaloshinskii-Moriya 自旋相互作用的系统14,15。然而,在这些系统中调整 skyrmion 手性的可能性仍是一个悬而未决的问题。虽然铁电材料中不存在预定义的手性对称性,但最近发现它们具有丰富的手性拓扑激发,包括布洛赫畴壁16-19,具有 skyrmion 结构的无芯涡旋20-22,单个 skyrmion 23,24,skyrmion 晶格 25 和 Hopfion 26。铁电体的一个显著特征是,当去极化电荷 ρ = ∇⋅ P 重排以降低它们的相互作用能时,由于限制和去极化效应的特定相互作用导致自发对称性破缺,从而出现手性,导致极化发生手性扭曲。重要的是,不同的手性(“左”态和“右”态)在能量上是简并的,因此可以互相切换。然而,执行这种手性切换是一项挑战,因为可以作为控制参数的基本场具有非手性性质。我们发现,由于去极化效应会导致大量拓扑激发,因此铁电纳米点可以提供丰富的相图,并且我们证明铁电纳米点包含极化 skyr-mions。特别是,我们设计了一个系统,其中可以通过施加电场来实现相反手性之间的受控切换。
方法样品制备使用“撕扯和堆叠”方法制造器件。用聚乙烯醇(PVA)拾取石墨烯和hBN。然后,将异质结构翻转到由甲基丙烯酸甲酯共聚物(Elvacite 2550/透明胶带/Sylgard 184)组成的中间结构上,并转移到具有 Ti/Au 电极的预先图案化的 SiO 2/Si 芯片上。将残留聚合物溶解在N-甲基-2-吡咯烷酮、二氯甲烷、水、丙酮和异丙醇中。我们进一步使用AFM尖端清洁和高温形成气体退火程序清洁样品表面。最后,将器件在170°C的超高真空中退火12小时,并在400°C下退火2小时,然后将其转移到STM中。 STM 测量 STM/STS 测量是在自制的稀释制冷机 STM 上进行的,其钨尖端在 Cu(111) 表面上制备。MATBG 的载流子密度由施加到简并掺杂 Si 的栅极电压 V g 和通过 Au/Ti 电极施加到 MATBG 的样品电压 V s 控制。dI/dV 是通过锁定检测由添加到 V s 的交流调制 V rms 引起的交流隧道电流来测量的。测量是在样品偏置电压 V s 接近零的情况下进行的,以避免由于 K 点或 M 点声子 43 引起的非弹性隧穿。序参数分解有关此过程的完整详细信息和说明,我们请读者参阅 SI。简而言之,大型低偏置 STM 图像被分割成较小的 0.25 - 1 nm 2 子区域。每个子区域都相对于每个子区域的中心进行傅里叶变换。我们对 FFT 峰值应用位置相关的相位因子,以强制跨子区域保持一致的原点。在 IVC 波矢处获得的每个局部 FFT 的三个独立复值分解为三个复 IVC 序参数(“IVC 键”、“IVC 位点 A”和“IVC 位点 B”),它们对应于 C 3 点群的三个不可约表示 {(1, 1, 1)、(1, ω, ω 2) 和 (1, ω 2 , ω),其中 ω ≡ e 2πi/3 }。根据构造,如果 LDOS 是莫尔周期的,则这些序参数也是莫尔周期的。参考文献:1. Cao, Y. 等人。魔角石墨烯半填充时相关绝缘体的行为
B41.002:高 Q 值超导谐振器高电阻率硅晶片低温损耗角正切测量 B57.002:超导 Nb 薄膜中亚间隙准粒子散射和耗散 B57.008:Nb 超导射频腔的电磁响应 B57.010:用于高 Q 值谐振腔的高纯铌超导态氢化物的非平凡行为 B57.012:轴子搜索的可行性研究:Nb SRF 腔中的非线性研究 D37.002:基于三维微波腔的微波光量子转导 D39.013:带有级联低温固态热泵的量子阱子带简并制冷 D40.008:基准测试方八边形晶格 Kitaev 模型的 VQE D41.003:用于量子计算的 Nb 谐振器中氧化铌退火的原位透射电子显微镜研究 F36.005:识别超导量子比特系统中缺陷和界面处的退相干源 F36.006:使用双音光谱理解和减轻超导射频 (SRF) 腔中的损耗 F36.007:通过 HT 相界分析优化用于量子器件的 Nb 超导薄膜 F36.008:循环:超导量子比特的多机构表征 F36.010:铌射频腔的 Nb/空气界面的原子尺度研究 K29.002:超导量子材料与系统 (SQMS) – 新的 DOE 国家量子信息科学研究中心M41.009:可调谐 transmon 量子比特的长期能量弛豫动力学作为损耗计量工具 N27.006:超导量子材料与系统 (SQMS) 研究中心的量子信息科学生态系统工作 Q71.007:高磁场中的超导材料在高能物理量子传感中的应用 Q37.005:多模玻色子系统量子启发式的数值门合成 S38.003:基于微米级约瑟夫森结的约瑟夫森参量放大器的制造和特性 S72.009:探究低温真空烘烤对超导铌 3-D 谐振器光子寿命的作用 T00.106:铌硅化物纳米膜的稳定性、金属性和磁性 T00.119:不同 RRR 值的铌膜的特性低温 T72.005:单个纳米结处异质偶极场和电荷散射的太赫兹纳米成像 W40.006:量子芝诺效应对两能级系统的动态解耦 W34.013:3D SRF QPU 的潜在多模架构探索 Y34.008:高相干性 3D SRF 量子比特架构的进展 Y40.009:理解和减轻超导量子比特中 TLS 引起的高阶退相干
量子退火 (QA) 的出现是未来量子计算发展的重要一步,也将极大地促进统计物理和材料科学建模的发展。到目前为止,QA 在这些领域的应用仍然很少,其中包括确定具有长程弹性相互作用的平衡微结构 1 、横向场 Ising 模型中的相变 2 、通过 Shastry-Sutherland 模型研究受挫磁系统的能态 3 以及设计超材料 4 。另一个例子是结合使用量子退火器和玻尔兹曼机来采样自旋玻璃并预测 MoS 2 层的分子动力学数据 5 。更一般地说,由 D-Wave 公司实施的 QA 可以有效地找到离散优化问题的基态配置,在学术界和工业界都有许多应用 6 – 10 。 QA 的概念是在低温下以明确定义的基态初始化系统的哈密顿量,然后平滑地转换能量景观,使其代表所需的优化问题。如果仔细执行这种绝热变换,系统最终会处于目标哈密顿量的基态,因此可以找到优化问题的全局最小值。然而,在实践中,准备、转换和读出过程并不是完全绝热、无噪音和与环境分离的,因此有时会发现能量更高的状态,尤其是与简并态 11 或太小的能隙结合时。因此,对于典型的 QA 应用,需要多次重复和读出来确定真实基态。在本文中,我们证明了该技术的这一缺陷实际上可以转化为优点,因为它可以非常有效地确定有限温度的热力学性质。从材料科学的角度来看,T = 0K 时的基态配置通常只对许多实际应用具有有限的意义。例如,对于铁磁体,所有自旋都排列在基态,而对于有限温度,热涨落会导致有限的关联长度、相变和温度相关的磁化。对此类属性进行统计建模的传统方法是使用蒙特卡罗 (MC) 采样技术,因为由于相空间的巨大规模,通常无法明确计算配分函数。此类计算最突出的方法可能是使用 Metropolis 转移概率生成离散马尔可夫链,这会生成一系列遵循玻尔兹曼统计的配置,因此可以通过更容易地计算这些马尔可夫链上的时间平均值来表达集合平均值 12、13。在实践中,根据玻尔兹曼分布 p ∼ exp ( − β ∆ E ) (其中 β = 1 / k BT ),从一个状态到另一个状态的转变正在发生,其概率取决于两个配置之间的能量差 ∆ E 。通常,这种方法在低温下效率低下,因为新配置的拒绝率非常高,因此在局部最小值中捕获的相空间采样不足,导致对所需热力学性质的预测有噪声。另一种重要的采样策略是由 Wang 和 Landau 开发的,他们使用非马尔可夫算法通过平坦直方图技术提取状态密度,从中可以计算出所有所需的热力学性质 14 。除了这些主要技术之外,Dall 等人还开发了一种在低温下快速采样玻尔兹曼分布的算法。然而,这种算法最适合具有短程相互作用的系统 15 。另一种公平采样基态和