靶向药物输送纳米系统的开发是一个具有挑战性的问题,旨在高效地运输生物活性分子并在患病组织的微环境中实现位点特异性释放。几年来,我们一直对修饰抗癌药物和神经保护药物以获得自组装纳米粒子 (NP) 感兴趣,从而提高其治疗效率。尽管传统的基于载体的 NP 在癌症治疗领域已显示出卓越的进展和前景,但仍需要进一步改进。例如,这种基于载体的 NP 的载药量通常较低(通常 <10 wt%),这大大降低了药物在肿瘤内的有效积累和释放药物的治疗效率。 1 此外,与此同时,由于复杂的制备程序和过度的化学处理,大多数报道的纳米载体在药物上是惰性的,这些载体的应用引发了人们对其代谢、生物降解和潜在的长期毒性以及严重炎症的担忧。 2 正因为如此,自组装纳米粒子是开发 NPs 的一种非常理想的替代策略,它本身携带治疗分子,而不是使用其他惰性载体。事实上,它们具有:(1)高载药能力;(2)由于纳米结构由定制的单个分子共轭物形成,因此可以精确控制药物负载;(3)通过简单优化分子设计即可轻松调整 NPs 的物理化学特性;
第 12 章 有丝分裂抑制剂的故事 – 长春花 – 紫杉醇 221009dj3 抗癌药物:发现和寻求治愈方法的故事 Kurt W. Kohn,医学博士,哲学博士 名誉科学家 分子药理学实验室 发育治疗学分部 美国国立癌症研究所 马里兰州贝塞斯达 kohnk@nih.gov 第 12 章 有丝分裂抑制剂的故事:紫杉醇和长春花。 本章介绍的抗癌药物是在某些植物或海洋生物中发现的毒素,它们可以阻断在有丝分裂过程中将染色体拉开的微管。微管还将必需分子沿着神经细胞的轴突向下传送,这就是这些药物会损害神经细胞的原因。 来自天然产物的抗癌药物 自然界的动物、植物和微生物充满了生物战剂,不同物种之间会发生冲突。天然毒药可以抵御捕食者和竞争对手。有些药物历来被人们用来下毒或治病。有些药物被用作治疗癌症的药物(Cragg 和 Newman,2004;Vindya 等人,2015)。由于这些药物也是毒药,因此,与大多数用于癌症化疗的药物一样,必须仔细调整给患者的剂量,以在不产生过多毒性的情况下对癌症产生显著作用。那么,这些微管毒药是如何起作用的呢?在有丝分裂期间,新形成的染色体对被称为微管的纤维拉开。然后每个子细胞都会得到一对新形成的染色体对,尽管癌细胞通常有异常的有丝分裂,从而产生具有异常染色体组的细胞。抗微管药物的主要作用是削弱有丝分裂时的细胞分裂。然而,与大多数癌症化疗一样,这些微管结合药物仅对那些比关键正常组织对它们更敏感的癌症有效。我将讲述两类抗微管药物的故事,它们
1. 简介 乳腺癌 (BC) 是全球女性中最常见且最致命的癌症类型。尽管 BC 治疗有所改进,但局部区域复发和远处转移仍然存在 (Guo et al., 2019)。癌症干细胞 (CSC) 被证明是当今治疗效果不佳的主要原因之一。CSC 是一小群细胞,与构成整体肿瘤的致瘤性较低的癌细胞不同,具有自我更新和分化为许多不同细胞的能力 (Mertins, 2014; Phi et al., 2018)。然而,据估计,这些细胞不仅是新肿瘤形成的原因,也是对复发和化疗产生抗性的原因 (Ari et al., 2013; Aztopal et al., 2018; Mertins, 2014; Phi et al., 2018)。近年来的研究支持了这一假设,并揭示了许多因素导致CSC的分化(Aztopal et al., 2018; Mertins, 2014; Phi et al., 2018)。
摘要背景乳腺癌 (BC) 是全球最常见的恶性肿瘤,也是女性癌症相关死亡的主要原因。Sirtuin 抑制剂 (SIRTi) 属于组蛋白去乙酰化酶抑制剂组 (HDI),是一种有效的表观遗传药物,已被研究用于治疗不同的临床疾病,包括血液系统恶性肿瘤和实体瘤。方法在 MCF7 管腔和 MDA-MB-231 三阴性乳腺癌 (TNBC) 细胞中测定了单独使用或与标准化疗紫杉醇 (PAX) 联合使用 cambiol (CAM; SIRTi) 对活力 (MTT 测定)、增殖 (BrdU 测定)、诱导凋亡和细胞周期停滞 (FACS 分析) 的影响。采用精确而严格的药效动力学方法——等效线图法,确定 CAM 和 PAX 之间的药理药物相互作用类型,以确定使用各种固定剂量比所分析药物之间是否存在协同作用、加成作用或拮抗作用。结果 CAM 和 PAX 以 1:1 的固定比例组合对 MCF7 和 MDA-MB-231 BC 细胞活力产生加成作用。两种活性药物单独使用均降低了 BC 细胞的活力和增殖,并诱导细胞凋亡和细胞周期停滞。这些影响在 MCF7 细胞中比在 MDA-MB-231 BC 细胞中更为明显。此外,与单独使用 PAX 相比,CAM 与 PAX 联合使用可增强抗癌活性。结论 CAM 可被视为一种潜在的治疗剂,单独使用或与 PAX 联合治疗管腔或 TNBC。
摘要。苹果树(Malus housea borkh。'Spartan'在1976年在马里兰州贝尔茨维尔的一个果园种植的mm 106根含量上,用紫杉醇A gibberellin生物合成抑制剂治疗,1982年春季,再次于1983年。在1982年,Paclo Butrazol [50湿粉(WP)]在1982年5月4日,14日和25日在333 mg litt1上应用于叶子喷雾。4月27日1983年,这些树干上涂有75 g升的紫杉醇1。紫杉醇在1983年没有抑制芽的增长,但在1984年降低了芽的生长。在春季,从冬季休眠时期到春季的生长恢复,在所有采样的日期中,经氯唑处理的木材的碳水化合物含量通常更高。在冬季采样日期中发现淀粉和可溶性碳水化合物之间的负相关系数,而在春季生长恢复期间,正相关系数很明显。在两年没有抑制生长(1983)或抑制(1984)时,通过治疗引起的碳水化合物的增加相似,表明紫杉醇对碳水化合物的代谢和生长有影响。使用的化学名称:P - [(4-氯苯基)甲基] -A-(L,l-二甲基乙基)-L // - 1,2,4--Triazole-1-乙醇(紫杉醇)。
摘要:乳腺癌是一种异质性疾病,具有不同的内在亚型。乳腺癌中最具侵袭性的亚型——三阴性乳腺癌(TNBC)具有高度异质性和转移率、预后不良以及由于缺乏雌激素受体、孕激素受体和人表皮生长因子受体2而缺乏治疗靶点的特点。靶向治疗已被批准用于许多其他癌症甚至其他乳腺癌亚型,但TNBC的治疗选择仍然主要局限于化疗。因此,需要新的、更有效的治疗方案。联合化疗与两种或两种以上的活性药物被认为是一种有前途的抗肿瘤工具,以获得更好的治疗反应并减少治疗相关的不良反应。该研究表明,在BT-549、MDA-MB-468和HCC1937 TNBC细胞系中,常用于TNBC治疗的细胞抑制剂紫杉醇(PAX)和sirtuin抑制剂:cambinol(CAM)具有拮抗作用。通过精确而严格的药效动力学方法-等效线分析确定药理相互作用的类型。分别利用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物 (MTT) 和 5-溴-2 ' -脱氧尿苷 (BrdU) 测定法确定 CAM 单独使用或与 PAX 联合使用的细胞毒性和抗增殖作用。通过流式细胞术 (FACS) 确定单独或联合使用 PAX 和 CAM 治疗后 TNBC 细胞系中细胞凋亡的诱导情况,即具有活性 caspase-3 的细胞数。据观察,两种药物单独使用均会抑制细胞增殖并诱导细胞凋亡;然而,联合使用它们可改善所有分析的 TNBC 细胞系中的抗增殖和促凋亡作用。我们的结果表明,CAM 和 PAX 联合使用会产生拮抗作用,从而限制抗癌功效,并显示出临床前测试的重要性。
紫杉醇类药物(紫杉醇和多西他赛)在晚期肉瘤的治疗中起着重要作用。白蛋白结合型紫杉醇(nab-paclitaxel)是一种新型紫杉醇,与紫杉醇和多西他赛相比具有许多优势。nab-paclitaxel目前被批准用于治疗晚期乳腺癌、非小细胞肺癌和胰腺癌。但尚未见nab-paclitaxel在肉瘤中的疗效综述。本文首先比较了nab-paclitaxel、紫杉醇和多西他赛的异同,然后根据已报道的临床试验结果总结了nab-paclitaxel对各种非肉瘤恶性肿瘤的疗效,并总结了nab-paclitaxel在肉瘤中的疗效和临床研究进展。本综述将为nab-紫杉醇在临床肉瘤治疗研究中的应用以及临床试验的设计提供参考。
目的:紫杉醇是一种用于治疗多种癌症(包括乳腺癌)的药物分子。由于其疗效高,它是首选的化疗药物之一。然而,已观察到紫杉醇使用相关的许多副作用,例如过敏、脱发、腹泻和疼痛。方法:我们评估了当紫杉醇在聚合物纳米粒子内主动靶向乳腺癌肿瘤时的治疗效果。据报道,使用各种纳米粒子将紫杉醇靶向递送到肿瘤部位是一种改进的细胞毒性策略。在本研究中,聚乳酸-乙醇酸 (PLGA) 纳米粒子被用作药物载体,核仁素适体被用作亲和力靶向剂。结果:在直径为 238 nm 的 PLGA 纳米粒子的合成过程中,紫杉醇分子被包裹。紫杉醇的包封率和负载率分别为 97% 和 21%。用核仁素适体对载有紫杉醇的 PLGA 纳米粒子进行功能化,并确定了它们对两种细胞系(E0771 和 4T1)培养的小鼠癌细胞的靶向能力。选择 E0771 细胞系来制备异体乳腺癌小鼠模型。对 PLGA 纳米粒子中的靶向紫杉醇的评估表明,与小鼠模型的游离紫杉醇治疗组相比,其抑制肿瘤生长的效果提高了 38%。结论:通过在肿瘤靶向聚合物纳米粒子内装载紫杉醇等抗癌药物可以增强其化疗效果。关键词:DNA 适体、纳米粒子、紫杉醇、药物输送系统
摘要 胃腺癌 (GAC) 的标准化疗方案疗效有限且毒性较大。在先前的 GAC 临床前研究中,白蛋白结合型紫杉醇已显示出良好的抗肿瘤作用。多韦替尼抑制受体酪氨酸激酶家族成员,包括 FGFR、VEGFR 和 PDGFR,并在包括 GAC 在内的许多实体瘤中表现出抗肿瘤作用。基于白蛋白结合型紫杉醇的抗有丝分裂、抗基质和 EPR 作用,我们研究了多韦替尼在多种 GAC 临床前模型中对白蛋白结合型紫杉醇反应的增强作用。在 MKN-45 皮下异种移植中,白蛋白结合型紫杉醇和多韦替尼对肿瘤生长的抑制率分别为 75% 和 76%。多韦替尼加白蛋白结合型紫杉醇对肿瘤生长有附加抑制作用,导致肿瘤消退(恢复至原始值的 85%)。与对照组(23 天)相比,多韦替尼单药治疗仅使动物存活率(25 天)略有改善,而白蛋白结合型紫杉醇单药治疗或多韦替尼加白蛋白结合型紫杉醇联合治疗分别使动物寿命显著延长 83%(42 天)和 187%(66 天)。皮下肿瘤的 IHC 分析显示,多韦替尼降低了肿瘤细胞增殖和肿瘤血管。体外研究表明,多韦替尼和白蛋白结合型紫杉醇单独使用可降低肿瘤细胞增殖,联合治疗可产生叠加效应。 MKN-45 和 KATO-III 细胞的免疫印迹分析显示,多韦替尼降低了磷酸化 FGFR、磷酸化 AKT、磷酸化 ERK、磷酸化 p70S6K、磷酸化 4EBP1、Bcl-2,并增加了裂解 PARP-1、裂解 caspase-3、p27、Bax、Bim,联合治疗具有附加作用。这些结果表明,FGFR/VEGFR/PDGFR 抑制剂多韦替尼有可能增强白蛋白结合型紫杉醇的抗肿瘤作用,这对临床 GAC 治疗的发展具有重要意义。
Amy S. Clark 1 ✉ 、Christina Yau 2 、Denise M. Wolf 2 、Emanuel F. Petricoin 3 、Laura J. van ' t Veer 2 、Douglas Yee 4 、Stacy L. Moulder 5 、Anne M. Wallace 6 、A. Jo Chien 2 、Claudine Isaacs 7 、Judy C. Boughey 8 、Kathy S. Albain 9 、Kathleen Kemmer 10 、Barbara B. Haley 11 、Hyo S. Han 12 、Andres Forero-Torres 13 、Anthony Elias 14 、Julie E. Lang 15 、Erin D. Ellis 16 、Rachel Yung 17 、Debu Tripathy 5 、Rita Nanda 18 、Julia D. Wulfkuhle 5 、Lamorna布朗-斯维加特 2 、罗莎·I·加拉格尔 5 、特雷莎·赫尔斯坦 6 、艾琳·罗施 6 、谢丽尔·A·尤因 2 、迈克尔·阿尔瓦拉多 2 、艾琳·P·克兰 7 、梅雷迪思·巴克斯顿 19 、朱莉娅·L·克伦内尔 19 、梅丽莎·保洛尼 19 、斯米塔·M·阿萨雷 2 、艾米·威尔逊 2 、 Gillian L. Hirst 2 , Ruby Singhrao 2 , Katherine Steeg 2 , Adam Asare 2 , Jeffrey B. Matthews 2 , Scott Berry 19 , Ashish Sanil 19 , Michelle Melisko 2 , Jane Perlmutter 20 , Hope S. Rugo 2 , Richard B. Schwab 6 , W. Fraser Symmans 5 , Nola M. 希尔顿 2 , 唐纳德A.贝里 19 、劳拉 J.埃瑟曼 2 和安吉拉 M.德米歇尔 1