在病毒与宿主的相互作用中,核酸指导的第一道防线至关重要,它可以在不影响生长的情况下清除病毒。植物使用 RNA 干扰途径作为基本的抗病毒免疫系统,但也存在其他基于 RNA 的防御机制。植物正链 RNA 病毒苜蓿花叶病毒 (AMV) 的传染性依赖于通过募集细胞 N 6 -甲基腺苷 (m 6 A) 脱甲基酶 ALKBH 9 B 来进行病毒 RNA 的去甲基化,但病毒 RNA 的去甲基化如何促进 AMV 感染仍不清楚。在这里,我们表明,失活拟南芥细胞质 YT 521 -B 同源结构域 (YTH) 的 m 6 A 结合蛋白 ECT 2 、 ECT 3 和 ECT 5 足以恢复部分抗性的 alkbh 9 b 突变体中的 AMV 传染性。我们进一步表明,ECT 2 的抗病毒功能不同于其先前证实的促进原始细胞增殖的功能:在其内在无序区域携带少量缺失的 ect 2 突变体在抗病毒防御方面会部分受损,但在发育功能方面不会受到影响。这些结果表明 m 6 A-YTHDF 轴构成了植物基础抗病毒免疫的一个新分支。
摘要:甲基化是一种广泛存在的天然修饰,具有多种调节和结构功能,由大量 S -腺苷-L -蛋氨酸 (AdoMet) 依赖性甲基转移酶 (MTases) 进行。AdoMet 辅因子由多聚体蛋氨酸腺苷转移酶 (MAT) 家族从 L -蛋氨酸 (Met) 和 ATP 产生。为了推进机制和功能研究,已经开发出重新利用 MAT 和 MTase 反应以接受来自相应前体的可转移基团的扩展版本的策略。在这里,我们使用结构引导的小鼠 MAT2A 工程,以便从合成的蛋氨酸类似物 S -(6-叠氮己-2-炔基)-L -同型半胱氨酸 (N 3 -Met) 生物催化生产扩展的 AdoMet 类似物 Ado-6-叠氮化物。三种工程化的 MAT2A 变体表现出对延伸类似物的催化能力,并且在没有和存在竞争性 Met 的情况下,都支持与 M. Taq I 和小鼠 DNMT1 的工程化变体在级联反应中进行 DNA 衍生化。然后,我们使用 CRISPR-Cas 基因组编辑将两种工程化变体作为 MAT2A-DNMT1 级联安装在小鼠胚胎干细胞中。所得细胞系在暴露于 N 3 -Met 且存在生理水平的 Met 时,保持正常的活力和 DNA 甲基化水平,并显示出 Dnmt1 依赖的 DNA 修饰和延伸叠氮化物标签。这首次展示了一种用于生物合成生产延伸 AdoMet 类似物的遗传稳定系统,该系统能够在活哺乳动物细胞中对 DNMT 特异性甲基化组进行轻度代谢标记。■ 简介
核酸纳米结构的自组装是由寡核苷酸模块通过互补序列之间的碱基配对选择性结合所驱动的。本文,我们报告了在腺苷配体控制下有条件组装的 RNA-DNA 混合纳米形状的开发。纳米形状的设计概念依赖于 DNA 适体的配体依赖性稳定,DNA 适体充当边缘稳定的 RNA 角模块之间的连接器。配体依赖性 RNA-DNA 纳米形状通过将腺苷结合与圆形闭合结构的形成相结合,在全有或全无的过程中进行自组装,这些结构通过在所得多边形中的连续碱基堆叠来稳定。通过筛选各种 DNA 适体构建体与 RNA 角模块的组合以形成稳定的复合物,我们确定了腺苷依赖性纳米方块,其形状通过原子力显微镜确认。作为传感器应用的概念验证,通过 DNA 适体成分的染料结合获得了对腺苷有响应的 FRET 活性纳米方块。
图1创建合成cAMP响应元件结合蛋白(CREB)响应启动子。(a)腺苷信号传导的描述。腺苷(红色球)结合腺苷受体A2AR/A2BR,该腺苷受体动员相关的G蛋白(绿色)激活腺苷酸环化酶(橙色受体),并将ATP转化为3'5'- 5'-循环腺苷单磷酸腺苷(Camp)。另外,福斯科蛋白(橙色球)可以直接激活腺苷循环酶。CAMP结合蛋白激酶A(PKA)与磷酸化的CREB,该CREB结合了Plindromic DNA基序“ TGACGTCA”,激活了基因表达。(b)启动子设计和筛选示意图。cAMP响应元件基序(CRE,突出显示的黄色)被克隆在3倍重复中,两侧是鸟嘌呤“ G”(带下划线),六个散布的填充核苷酸(N)。3x Cres(灰色正方形)放在核心启动子(蓝色箭头)上游的1-6个重复中。用高斯荧光素酶(GLUC)或绿色荧光蛋白(EGFP)定量启动子活性。(c,d)HEK293T细胞在96个井板中用指示的构建体(x轴)反向转染。转染后48小时,用车辆(DMSO,浅蓝色条)或20μm福斯科林(FSK,深蓝色条)将细胞介质更改为培养基。八个小时后,对培养基进行了采样并测试了GLUC活性(RLU)。条表示n = 3实验重复的平均值,误差线代表标准误差(SEM)。**通过方差分析(ANOVA)Tukey检验,与所有其他样本相比,表示P <0.01。(E,F)流式细胞仪启动子诱导。HEK293T细胞用96个井板中的指定构建体(x轴)反向转染。转染后48小时,细胞培养基被更改为未处理的培养基(浅蓝色条),或补充了0.750 m m m腺苷(ADO,深蓝色条)的培养基。八个小时后,将细胞胰蛋白酶胰蛋白酶进行胰蛋白酶,并将其重悬于FACS缓冲液中以进行流式细胞仪。y轴表示正向散射(FSC)单元的EGFP中位荧光强度。条代表n = 3实验重复的平均值,误差线代表SEM。(g)启动子对腺苷的剂量反应性。HEK293T细胞在96个井板上反向转染,并在传说中指示的构造,然后培养48小时。然后更改培养基以添加不同的腺苷浓度,在8小时后进行采样,并测试了GLUC活性(RLU)。**通过12倍-CRE_YB的ANOVA TUKEY测试代表P <0.01,与1 m m的所有其他样品相比。每个点表示n = 3实验重复的平均值,误差线为SEM。
作用于 RNA 的腺苷脱氨酶 (ADAR) 可以重新用于实现位点特异性的 A-to-I RNA 编辑,方法是通过 ADAR 招募向导 RNA (adRNA) 将它们招募到感兴趣的靶标上。在本章中,我们详细介绍了通过两种正交策略实现此目的的实验方法:一是通过招募内源性 ADAR(即已经在细胞中天然表达的 ADAR);二是通过招募外源性 ADAR(即将 ADAR 递送到细胞中)。对于前者,我们描述了使用环状 adRNA 将内源性 ADAR 招募到所需的 mRNA 靶标上。这可在体外和体内实现稳健、持久且高度转录特异性的编辑。对于后者,我们描述了使用 split-ADAR2 系统,该系统允许过度表达 ADAR2 变体,可用于以高特异性编辑腺苷,包括难以编辑非优选基序中的腺苷,例如 5′ 鸟苷两侧的腺苷。我们预计所述方法应促进研究和生物技术环境中的 RNA 编辑应用。
尽管免疫疗法对晚期非小细胞肺癌 (NSCLC) 具有相关的抗肿瘤疗效,但对于癌症携带激活表皮生长因子受体 (EGFR) 突变的患者的结果却令人失望。EGFR 突变型 NSCLC 患者的免疫逃逸以及对免疫疗法无反应和耐药性的生物学机制已被部分研究。在这方面,肺癌免疫逃逸主要涉及肿瘤环境中具有广泛免疫抑制作用的大量腺苷。事实上,除了免疫检查点受体及其配体之外,诱导免疫抑制的其他机制,包括由外核苷酸酶 CD39 和 CD73 产生的腺苷也会导致肺肿瘤发生和进展。在这里,我们回顾了免疫检查点抑制剂在 EGFR 突变型 NSCLC 中的临床结果,重点关注 EGFR 突变型肿瘤微环境的动态免疫组成。腺苷通路介导的肿瘤微环境中能量代谢失调被认为是免疫逃逸过程的潜在机制。最后,我们报告了制定免疫检查点阻断和腺苷信号抑制联合治疗策略以克服 EGFR 突变 NSCLC 的免疫逃逸和免疫治疗耐药性的有力理由。
儿童期交替偏瘫(AHC)是一种罕见的神经系统疾病,通常在18个月大之前表现出来,其特征是复发性,交替的偏瘫发作,其频率可变,并且可以持续几分钟到几天。我们在一个小女孩中介绍了一个AHC的案例,该案件在ATP1A3基因(P.Glu815lys)中携带零星突变(p.glu815lys)对氟纳氨基氨酸的难治性,并且由于用腺苷5'-三磷酸腺苷(Triphosphate(Priphosphate)口服化合物治疗的不良反应,因此对topiramate不合格。通过随访评估结果,并定期监测副作用和安全性。复合药物显示出有效性和安全性。的确,在四年的随访中,随着腺苷-5'三磷酸的剂量逐渐增加至21 mg/kg,患者在控制偏瘫发作的频率和持续时间和神经系统恶化的改善方面表现出很大的好处。
目的:三磷酸腺苷敏感钾通道开放剂二氮氧化物可模拟缺血性预处理并具有心脏保护作用。明确二氮氧化物的作用位点和作用机制可为接受心脏手术的患者提供有针对性的药物治疗。几种线粒体候选蛋白已被研究作为潜在的三磷酸腺苷敏感钾通道成分。肾外髓质钾 (Kir1.1) 和磺酰脲类敏感调节亚基 1 被认为是线粒体三磷酸腺苷敏感钾通道的亚基。我们假设,在伴有心脏停搏液的全身缺血模型中,药物阻断或基因缺失 (敲除) 肾外髓质钾和敏感调节亚基 1 将导致二氮氧化物失去心脏保护作用。
氰化物是一种抑制呼吸的毒药。它是一种非竞争性抑制剂,这意味着它与远离活性部位的地方的酶结合,这会导致活性位点改变其形状,从而确保底物不再形成酶 - 肌层复合物。所讨论的酶是细胞色素氧化酶。该酶在细胞的线粒体内发现,当抑制时,氧气使用降低,抑制了ATP的产生(腺苷三磷酸腺苷,释放的能量培养基)。