摘要 过去几十年来,随着世界人口的增长,食品需求也随之上升,人工智能(AI)已成为食品工业的最新技术。上述智能系统在食品质量测定、控制工具、食品分类和预测目的等各种任务中的能力,加剧了食品工业对它们的需求。因此,本文回顾了这些不同的应用,比较了它们的优势、局限性和配方,作为选择最合适方法来促进未来人工智能和食品工业相关发展的指导方针。此外,还强调了该系统与电子鼻、电子舌、计算机视觉系统和近红外光谱(NIR)等其他设备的集成,所有这些都将使行业参与者和消费者受益。
在本讲座中,我们将讨论如何将光学图像转换为数字图像,以便计算机视觉系统对其进行分析。我们将首先简要介绍成像的历史,并列出导致现代数码相机诞生的重大发明的时间表。我们认为成像发展中最重要的发明是图像传感器。我们将描述两种类型的图像传感器——CCD 传感器和 CMOS 传感器——并研究它们的特性,包括分辨率(图像中的像素数)、噪声(对图像的不良修改)和动态范围(传感器能够测量的亮度值范围)。然后,我们将讨论如何设计图像传感器来捕捉颜色,简单地说,颜色是人类对不同波长光的反应。
摘要 本研究的目的是基于关于视觉系统对二进制编码视觉刺激的实际 EEG 响应的行为和特性的实验结果,开发一种设计利用代码调制视觉诱发电位 (cVEP BCIs) 的脑机接口刺激序列的新方法,从而减少训练时间并增加可能的目标数量。以 2000 sps 的速度记录来自 8 个枕骨部位的 EEG,以响应刷新率为 60 Hz 的计算机显示器上呈现的视觉刺激。记录视觉系统对显示器上目标区域黑到白和白到黑转换的 EEG 响应,持续 500 毫秒,进行 160 次试验,并取信号平均以分别获得起始(正边)和偏移(负边)响应。发现两个边缘响应都延迟了 50 毫秒,并在 350 毫秒内完全减弱。然后利用叠加原理使用这些边缘响应生成(预测)对任意二进制刺激序列的 EEG 响应。研究发现,对某些(16)个简单短序列(16.67 – 350 毫秒)所生成的和测量的 EEG 响应高度相关。然后将这些“最佳短模式”随机组合以设计长(120 位,2 秒)“叠加优化脉冲(SOP)”序列,并通过叠加边缘响应获得它们的 EEG 响应模板。与将叠加原理应用于传统 m 序列和随机生成的序列相比,基于 SOP 序列的 Visual Speller BCI 应用程序获得了更高的准确率(95.9%)和信息传输速率(ITR)(57.2 bpm)。BCI 应用程序的训练仅涉及边缘响应的获取,耗时不到 4 分钟。这是第一项通过叠加边缘响应来获取 cVEP BCI 序列的 EEG 模板的研究。
颜色是我们心理经历的普遍特征,在人类思想和行为的许多方面都发挥了作用,例如基本视觉,场景感知,对象识别和沟通。揭示了人类如何编码,感知,谈论和使用颜色是一项主要的跨学科工作。在生命的头十年中存在中央运动传导时间的减少。几种机制是相关的,包括建立直接的Cor ticle-----------中央系统轴突的生长过程以及在皮质和脊柱水平上突触兴奋性的成熟。颜色是我们心理逻辑体验的无处不在的特征。人类视觉系统从我们周围的物体和表面发出的光波长中构建了颜色的感知体验。
• 确定展示心理模型形式和在模型上所使用的操作的行为。 “• 探索目标导向表征的替代观点(例如,所谓的序列/方法表征)并详细说明从它们预测的行为。• 扩展可能存在的心理表征类型,以包括那些可能不是机械的,例如代数和视觉系统。• 确定人们如何混合不同的表征来产生行为。• 探索如何获得有关系统的知识。• 确定个体差异如何影响系统的学习和性能。• 探索系统的训练序列的设计。 • 提供系统为系统设计师提供工具,帮助他们开发能够在用户中唤起“良好”表现的系统。• 扩展本研究的任务领域,以包括更复杂的软件。
全新模块化飞行甲板™ 现已上市!我们重新设计了我们的旗舰系统,使其功能更加强大,人体工程学也得到了改进。MFD 现在采用全金属结构、双链接控制、225 度集成沉浸式视觉系统、动态控制负载(俯仰/滚转/偏航)、具有交叉填充功能的 430W 和 530W GPS 装置、具有数字高度预选的音频面板、报警器面板、增压面板、面板背光、功能断路器面板、顶置面板、四向对讲机、全新中央控制台以及许多其他新功能。将该系统与我们任何可用的运动基座相结合,体验当今市场上功能最强大的 AATD。
借助 Garmin G3000 航空电子设备套件的强大功能,您可以减少管理驾驶舱的时间,而花更多的时间享受飞行。驾驶舱空间更大,更适合飞行员,符合人体工程学,您可以舒适高效地飞行,直观的触摸屏控制让您只需一瞥即可获得所有重要信息。可选的增强视觉系统 (EVS) 可让您更好地了解即将到来的天气、雾等,而驾驶舱的技术可让您在最大程度上减少干扰,从而提高对所有操作的了解。全数字双通道 Garmin 飞行控制系统带来的不仅仅是自动驾驶仪。它提供冗余和可靠性,同时优化整个空速包络线的性能。
摘要 本文介绍了一种基于视觉的着陆 (VBL) 概念,该方法整合了以下贡献:a) 利用飞行员交互来利用人类卓越的物体识别能力。这大大减少了视觉系统必须覆盖的搜索空间。飞机数据、已知情景背景和背景信息也被整合在一起。b) 一种不同的设计方法,包括多种图像处理 (IP) 算法的组合,提高了从早期进近到着陆和在不同环境条件下滑行的整个距离范围的稳健性。c) 使用此处介绍的结果进行飞机控制的视觉伺服在随附的论文中进行了展示。13 对于初步测试,已经实施了合成图像的模拟。
全新模块化飞行甲板™ 现已上市!我们重新设计了我们的旗舰系统,使其功能更加强大,人体工程学得到进一步改善。MFD 现在采用全金属结构、双链接控制、225 度集成沉浸式视觉系统、动态控制负载(俯仰/滚转/偏航)、具有交叉填充功能的 430W 和 530W GPS 装置、具有数字高度预选功能的音频面板、报警器面板、增压面板、面板背光、功能断路器面板、顶置面板、四向对讲机、全新中央控制台以及许多其他新功能。将该系统与我们任何可用的运动基座相结合,体验当今市场上功能最强大的 AATD。